The Constant Copolymer Composition Technique

  • A. Nagy
  • I. Országh
  • J. P. Kennedy

Abstract

The Constant Copolymer Compositon (CCC) technique readily produces copolymers with constant (homogeneous) macro-and microcompositions (microstructures) even from monomer pairs with significantly different reactivities, for example with monomers whose reactivity ratios differ by an order of magnitude. The CCC technique eliminates the compositional drift along copolymer chains which always arise in copolymers made by batch or forced ideal techniques and necessarily lead to inhomogeneous often ill-defined products. In the CCC technique a stream of comonomers is fed continuously to the active copolymerization charge such that the composition of the feed and the rate of feed addition are respectively equal to the composition of the copolymer produced and the rate of copolymerization. The fundamentals of the CCC technique together with a detailed quantitative analysis are presented, and the differences of the conventional and CCC techniques are discussed and illustrated with the industrially important isobutylene-p-methylstyrene copolymerization system.

Keywords

Kelen Copolymerization Isobutylene Akron 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Odian: Principles of Polymerization, 3rd. Ed., J. Wiley and Sons, 1991Google Scholar
  2. 2.
    D.A.Tirrell: Encyclopedia of Polymer Sci. and Eng.: 2nd Ed., Vol 4, 192 (1986), Wiley and Sons.Google Scholar
  3. 3.
    J.P. Kennedy and B. Iván: Designed Polymers by Carbocationic Macromolecular Engineering: Theory and Practice, Hanser, Munich 1991.Google Scholar
  4. 4.
    H.J. Harwood and W.M. Ritchey, J.Polym.Sci. B, 6, 277 (1968).Google Scholar
  5. 5.a
    J.P. Kennedy and T. Chou: J. Macromol. Sci. Chem. A10(7), 1357 (1976)Google Scholar
  6. b.
    J.P.Kennedy and T.Chou: Advances in Polym. Sci., 21, 1 (1976).CrossRefGoogle Scholar
  7. 6.
    W.H. Stockmayer: J.Chem.Phys., 13, 199 (1945).CrossRefGoogle Scholar
  8. 7.
    B. Turcsányi: Macromol. Reports, A30, (Suppl. 3 and 4 ), 281 (1993).Google Scholar
  9. 8.
    I.Majoros, A. Nagy and J.P. Kennedy: Advances in Polym. Sci., 112, 1 (1994).CrossRefGoogle Scholar
  10. 9.a)
    I. Országh, A. Nagy and J.P. Kennedy: J.Phys.Org.Chem.,Special Issue (1995), in pressGoogle Scholar
  11. b).
    I. Országh, A. Nagy and J.P. Kennedy: Abstracts, MacroAkron ‘94,35th Intl. Symp. Macromol., Akron, 7/11–15/1994. p.83Google Scholar
  12. 10.a)
    A. Nagy, I. Országh and J.P. Kennedy: J.Phys.Org.Chem.,Special Issue, 1995, in pressGoogle Scholar
  13. b).
    A. Nagy, I. Országh, J.P. Kennedy: Abstracts, MacroAkron ‘94,35th Intl. Symp. Macromol., Akron, 7/11–15/1994. p.83Google Scholar
  14. 11.
    J.Puskás, G. Kaszás, J.P. Kennedy, T. Kelen and F. Tüdös: J. Macromol. Sci. Chem., A18(9), 1315 (1982–83).Google Scholar
  15. 12.
    G. Kaszös, M.Györ, J.P. Kennedy and F. Tüdös: J. Macromol. Sci. Chem., A18(9), 1367 (1982–83).Google Scholar
  16. 13.
    B.L.Crynes and H.S. Fogler: American Institute of Chemical Engineers, Series E, Vol. 2, (1981).Google Scholar
  17. 14.a
    T.Alfrey, Jr. and G.Goldfinger: J. Chem. Phys., 12, 205 (1944)CrossRefGoogle Scholar
  18. b.
    F.R. Mayo and F.M. Lewis: J. Amer. Chem. Soc., 66, 1594 (1944)CrossRefGoogle Scholar
  19. c.
    F.T.Wall: J. Amer. Chem. Soc., 66, 2050 (1944).CrossRefGoogle Scholar
  20. 15.
    I. Országh, A. Nagy, J.P. Kennedy: see subsequent paper in this series.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • A. Nagy
    • 1
  • I. Országh
    • 1
  • J. P. Kennedy
    • 1
  1. 1.Maurice Morton Institute of Polymer ScienceThe University of AkronAkronUSA

Personalised recommendations