Skip to main content

Group Transfer Polymerization and Its Relationship to Other Living Systems

  • Chapter
Book cover Macromolecular Engineering
  • 109 Accesses

Abstract

The large number of organic function groups that can be attached to the ester function of methacrylate and acrylate monomers makes this series of monomers attractive for synthesis of polymers with diverse properties. When this diversity of functionality is coupled with living polymerization techniques the range of new product possibilities is staggering. Polymer synthesis chemists have therefore been searching for living polymer systems for methacrylates and acrylates that operate at above ambient temperature, use reasonably low cost initiators, tolerate moderate amounts of impurities, control chain tacticity and allow the functionality that is to be introduced to survive the polymerization process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Davis, T. P., Haddleton, D. M., and Richards, S. N., 1994, Controlled polymerization of acrylates and methacrylates, J. Macromol. Sci.-Chem. Phys. C34(2): 243–324.

    Article  Google Scholar 

  2. Muller, A. H. E., 1990, Group transfer and anionic polymerization: a critical comparison, Makrocool. Chem., Macromol. Symp.32: 87–104.

    Article  Google Scholar 

  3. Webster, O. W., Hertler, W. R., Sogah, D. Y., Farnham, W. B., and RajanBabu, T. V. J., 1983, Group transfer polymerization. 1. A new concept for addition polymerization with organosilicon initiators, J. Am. Chem. Soc.105: 5706–5707.

    Article  CAS  Google Scholar 

  4. Quirk, R. P., and Bidinger, G. P., 1989, Mechanistic role of enolate ions in “Group Transfer Polymerization”, Polymer Bulletin22: 63–70.

    Article  CAS  Google Scholar 

  5. Jenkins, A. D., 1993, Anionic polymerization at ambient temperature, Eur Polym. J.29: 449–450.

    Article  CAS  Google Scholar 

  6. Sogah, D. Y., Hertler, W. R., Webster, O. W., and Cohen, G. M., 1987, Group transfer polymerization. Polymerization of acrylic monomers, J. Am. Chem. Soc.20: 1473–1488.

    CAS  Google Scholar 

  7. Hertler, W. R., Sogah, D. Y., Webster, O. W., and Trost, B. M., 1984, Group transfer polymerization. 3 Lewis acid catatysis, Macromolecules17: 1415–1417.

    Article  CAS  Google Scholar 

  8. Yasuda, H., Yamamoto, H., Yamashita, M., Yokota, K., Nakamura, A., Miyake, S., Kai, Y., and Kanehisa, N., 1993, Synthesis of high molecular weight poly(methyl methacrylate) with extremely low polydispersity by the unique function of organolanthanide (III) complexes, Macromolecules26: 7134–7143.

    Article  CAS  Google Scholar 

  9. Yasuda, H., Furo, M., Yamamoto, H., Nakamura, A., Miyake, and S., Kibino, N., 1992, New approach to block copolymerization of ethylene with alkyl methacrylates and lactones by unique catalysis with organolanthanide complexes, Macromolecules25: 5115–5116.

    CAS  Google Scholar 

  10. Boffa, L. S., and Novak, B. M., 1994, Bimetallic Samarium (III) initiators for the living polymerization of methacrylates and lactones. A new route into tetechelic, triblock, and “link-functionalized” polymers, Macromolecules27: 6993–6995.

    Article  CAS  Google Scholar 

  11. Collins, S., Ward, D. G., and Suddaby, K. H., 1994, Group transfer polymerization using metallocene catalysts: Propagation mechanisms and control of polymer stereochemistry, Macromolecules, 27: 7222–7224.

    Article  CAS  Google Scholar 

  12. Adachi, T., Sugimoto, H., Aida, T., and Inoue, S., 1993, Aluminum thiolate complexes of porphyrin as excellent initiators for Lewis acid-assisted high-speed living polymerization of methyl methacrylate, Macromolecules26: 1238–1243.

    Article  CAS  Google Scholar 

  13. Inoue, S., Aida, T., Sugimoto, H., Kawamura, C., and Kuroki, M., 1993, Novel catalyst systems for the synthesis of poly(alkylene oxide) with controlled molecular weight, Proc. ACS Div. Polym. Mater. Sci., Engl. 69: 428–

    CAS  Google Scholar 

  14. Ballard, D. G. H., Bowles, R. J., Haddleton, D. M., Richards, S. N., Sellens, R., and Twose, D. L., 1992, Controlled polymerization of methyl methacrylate using lithium aluminum alkyls, Macromolecules, 25: 5907–5913.

    Article  CAS  Google Scholar 

  15. Wang, J. S., Teyssie’, Ph., Heim, Ph., Vuillemin, B., 1994, French Patent 94, 06891.

    Google Scholar 

  16. Haddleton, D. M., Muir, A. V. G., O’Donnell, J. P., and Twose, D. L., 1993, Synthesis of block copolymers and homopolymers of methacrylates using a mixed Al/Li alkyl initiator, Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem.34 (2): 564–565.

    CAS  Google Scholar 

  17. Anderson, B. C., Andrews, G. D., Arthur, P., Jacobson, H. W., Melby, L. R., Playtis, A. J., and Sharkey, W. H., 1981, Anionic Polymerization of Methacrylates. Novel functional polymers and copolymers, Macromolecules, 14: 1599–1601.

    Article  CAS  Google Scholar 

  18. Lockmann, L., Kolarik, J., Doskocilova, D., Voska, S., and Trekoval, J., 1979, Metallo esters. VII - Stabilizing effects of sodium tert-butoxide on the growth center in anionic polymerization of methacrylate esters, J. Polym. Sci., Polym. Chem. Ed., 17: 1727–1737.

    Article  Google Scholar 

  19. Wang, J.-S., Jerome, R., and Teyssie, Ph., 1994, Anionic polymerization of acrylic monomers 19. Effect of various types of ligands other than lithium chloride on the stereochemistry of anionic polymerization of methyl methacrylate, Macromolecules, 27: 4902–4907.

    Article  CAS  Google Scholar 

  20. Wang, J.-S, Jerome, R., and Teyssie, Ph., 1994, Anionic polymerization of acrylic monomers. 18. NMR characterization of a unique complex between lithium 2-(2-methoxyethoxy) ethoride and methyl cclithioisobutyrate, Macromolecules, 27: 4896–4901.

    Article  CAS  Google Scholar 

  21. Fayte, R., Forte, R., Jacobs, C., Jerome, R., Ouhadi, T., Teyssie, Ph., and Varshney, S. K., 1987, New initiator system for the “living” anionic polymerization of tert-alkyl acrylates, Macromolecules, 20: 1442–1444.

    Article  Google Scholar 

  22. Reetz, M. T., Knauf, T., Minet, U., and Bingel, C., 1988, Metal-free carbanion salts as initiators for the anionic polymerization of acrylic and Methacrylic acid esters, Angew. Chem. Int. Ed. Engl., 27: 1373 – 1374.

    Article  Google Scholar 

  23. Sivaram, S., Dhal, P. K., Kashikai, S. P., Khisti, R. S., Shinde, B. M., and Baskaran, D., 1991, Approaches to controlled polymerization of methyl acrylate through functional anionic initiators, Polym. Bull, 25: 77–81.

    CAS  Google Scholar 

  24. Wang, J.-S., Jerome, R., Bayard, Ph., Baylac, L., Patin, M., and Teyssie, Ph., 1994, Anionic polymerization of acrylic monomers. 15. Living anionic copolymerization of mixtures of methyl methacrylate and tert-butyl acrylate as promoted by dibenzo-18-crown 6, Macromolecules, 27: 4615 – 4620.

    Article  CAS  Google Scholar 

  25. Webster, O. W., (1994) Does anion-catalyzed group-transfer polymerization proceed via an endate intermediate, J. Macromol. Sc., Rure App. Chem., A31: 927–0935.

    CAS  Google Scholar 

  26. Haggard, R. A., and Lewis, S. N., 1984, Methacrylate oligomers via alkoxide-initiated polymerization, Prog. Org. Coatings, 12: 1–26.

    Article  CAS  Google Scholar 

  27. Suzuki, T., Murakami, Y., and Takegami, Y., 1980, Synthesis and characterization of block copolymers of poly(ethylene oxide) and poly(methyl methacrylate), Polym. J.12: 183–192.

    Article  CAS  Google Scholar 

  28. Pietzonka, T., and Seebach, P., 1993, the P4-phosphazene base as part of a new metal-free initiator system for the anionic polymerization of methyl methacrylate, Angew. Chem. Int. Ed. Engl., 32: 716–717.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Webster, O.W. (1995). Group Transfer Polymerization and Its Relationship to Other Living Systems. In: Mishra, M.K., Nuyken, O., Kobayashi, S., Yağci, Y., Sar, B. (eds) Macromolecular Engineering. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1905-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1905-8_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5778-0

  • Online ISBN: 978-1-4615-1905-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics