Characterization of the Transmissible Gastroenteritis Virus (TGEV) Transcription Initiation Sequence

Characterization of TGEV TIS
  • Julian A. Hiscox
  • Karen L. Mawditt
  • David Cavanagh
  • Paul Britton
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 380)


The ability of the TGEV transcription initiation sequence (TIS) to produce subgenomic RNAs was investigated by placing a reporter gene, chloramphenicol acetyltrans-ferase (CAT) under the control of either the mRNA 6 or the mRNA 7 TISs. Both constructs only produced CAT in TGEV infected cells and the amount of CAT produced from the mRNA 7 TIS was less than from the mRNA 6 TIS. Mutations were made within and around the TISs and the effect on CAT production assayed. The results showed that the TGEV TIS acted as an initiator of transcription for CAT, though the degree of base pairing between the TIS and leader RNA was not the only factor implicated in the control of transcription.


Cell Sheet Mouse Hepatitis Virus Subgenomic RNAs Feline Infectious Peritonitis Transmissible Gastroenteritis Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lai, M.M.C. (1986). Coronavirus leader-RNA-primed transcription: An alternative mechanism to RNA splicing. BioEssays 5, 257–260.PubMedCrossRefGoogle Scholar
  2. 2.
    Konings, D.A.M., Bredenbeek, P.J., Noten, J.F.H., Hogeweg, P. and Spaan, W.J.M. (1988). Differential premature termination of transcription as a proposed mechanism for the regulation of coronavirus gene expression. Nucl. Acids Res. 16, 10849–10860.PubMedCrossRefGoogle Scholar
  3. 3.
    Sawicki, S.G. and Sawicki, D.L. (1990). Coronavirus transcription: subgenomic mouse hepatitis virus replicative intermediates function in RNA synthesis. J. Virol. 64, 1050–1056.PubMedGoogle Scholar
  4. 4.
    Jacobs, L., van der Zeijst, B.A.M. and Horzinek, M.C. (1986). Characterization and translation of transmissible gastroenteritis virus mRNAs. J. Virol 57, 1010–1015.PubMedGoogle Scholar
  5. 5.
    Page, K.W., Britton, P. and Boursnell, M.E.G. (1990). Sequence analysis of the leader RNA of two porcine coronaviruses: Transmissible gastroenteritis virus and porcine respiratory coronavirus. Virus Genes 4, 289–301.PubMedCrossRefGoogle Scholar
  6. 6.
    Page, K.W., Mawditt, K.L. and Britton, P. (1991). Sequence comparison of the 5’ end of mRNA 3 from transmissible gastroenteritis virus and porcine respiratory coronavirus. J. Gen. Virol. 72, 579–587.PubMedCrossRefGoogle Scholar
  7. 7.
    de Groot, R.J., ter Haar, R.J., Horzinek, M.C. and van der Zeijst, B.A.M. (1987). Intracellular RNAs of the feline infectious peritonitis coronavirus strain 79–1146. J. Gen. Virol. 68, 995–1002.PubMedCrossRefGoogle Scholar
  8. 8.
    Horsburgh, B.C., Brierley, I. and Brown, T.D.K. (1992). Analysis of a 9.6 kb sequence from the 3’ end of canine coronavirus genomic RNA. J. Gen. Virol. 73, 2849–2862.PubMedCrossRefGoogle Scholar
  9. 9.
    Rasschaert, D., Gelfi, J. and Laude, H. (1987). Enteric coronavirus TGEV -partial sequence of the genomic RNA, its organization and expression. Biochimie 69, 591–600.PubMedCrossRefGoogle Scholar
  10. 10.
    Britton, P., Lopez Otin, C., Martin Alonso, J.M. and Parra, F. (1989). Sequence of the coding regions from the 3.0 kb and 3.9 kb mRNA subgenomic species from a virulent isolate of transmissible gastroenteritis virus. Arch. Virol. 105, 165–178.PubMedCrossRefGoogle Scholar
  11. 11.
    Schenborn, E.T. and Mierendorf Jr, R.C. (1985). A novel transcription property of SP6 and T7 RNA polymerases: dependence on template structure. Nucl. Acids Res. 13, 6223–6236.PubMedCrossRefGoogle Scholar
  12. 12.
    Britton, P., Cármenes, R.S., Page, K.W., Garwes, D.J. and Parra, F. (1988). Sequence of the nucleoprotein from a virulent British field isolate of transmissible gastroenteritis virus and its expression in Saccharomy ces cerevisiae. Molec. Microbiol. 2, 89–99.CrossRefGoogle Scholar
  13. 13.
    GLIM, version 3.77, update 0. The Royal Statistical Society, London.Google Scholar
  14. 14.
    Kozak, M. (1983). Comparison of initiation of protein synthesis in prokaryotes, eukaryotes and organelles. Microbiol. Rev. 47, 1–45.PubMedGoogle Scholar
  15. 15.
    Kozak, M. (1986). Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44, 283–292.PubMedCrossRefGoogle Scholar
  16. 16.
    van der Most, R.G., de Groot, R.J. and Spaan, W.J.M. (1994). Subgenomic RNA synthesis directed by a synthetic defective interfering RNA of mouse hepatitis virus: a study of coronavirus transcription initiation. J. Virol. 68, 3656–3666.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Julian A. Hiscox
    • 1
  • Karen L. Mawditt
    • 1
  • David Cavanagh
    • 1
  • Paul Britton
    • 1
  1. 1.Division of Molecular BiologyInstitute for Animal HealthCompton, NewburyUK

Personalised recommendations