Advertisement

Rich Dynamics in a Simplified Excitable System

  • Shimon Marom
  • Amir Toib
  • Erez Braun
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 382)

Abstract

The study aims at exploring effects of microscopic channel fluctuations on macroscopic dynamics of excitable systems. Molecular biology techniques are used in order to construct a minimal excitable system that is built of cloned channels embedded in a small (∼1 µm2) isolated patch of membrane. This simple synthetic “point” system exhibits dynamics in time scales that are several orders of magnitude longer then a single spike.

Keywords

Potassium Channel Molecular Biology Technique Excitable System Exciting Force Fire Action Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Storm JF. Temporal integration by a slowly inactivating K current in hippocampal neurons. Nature. 1988;336:379–381.PubMedCrossRefGoogle Scholar
  2. 2.
    Hsu H, Huang E, Yang X, Karschin A, Labarca C, Figl A, Ho B, Davidson N, Lester HA. Slow and incomplete inactivation of voltage-gated channels dominate encoding in synthetic neurons. Biophys J. 1993;65:1196–1206.PubMedCrossRefGoogle Scholar
  3. 3.
    Marom S, Levitan IB. State-dependent inactivation of the Kv3 potassium channel. Biophys J. 1994;67:579–589.PubMedCrossRefGoogle Scholar
  4. 4.
    Marom S, Abbott LF. Modeling state-dependent inactivation of membrane currents. Biophys J. 1994;67:515–520.PubMedCrossRefGoogle Scholar
  5. 5.
    Marom S. A note on bi-stability in a simple synapseless “point neuron” model. Network: Computation in Neural System. 1994;5:327–331.CrossRefGoogle Scholar
  6. 6.
    Stühmer W, Ruppersberg JP, Schroter KH, Sakmann B, Stocker M, Giese KP, Perschke A, Baumann A, Pongs O. Molecular basis and functional diversity of voltage-gated potassium channels in mammalian brain. EMBO. 1989; 8:3235–3244.Google Scholar
  7. 7.
    Noda M, Ikeda T, Kayano T, Suzuki H, Takeshima H, Kurasaki M, Takahashi H, Numa S. Exsitence of distinct Na channel messenger RNAs in rat brain. Nature. 1989;320:188–192.CrossRefGoogle Scholar
  8. 8.
    Marom S, Goldstein SAN, Kupper J, Levitan IB. Mechanism and modulation of inactivation of Kv3 potassium channel. Receptors and Channels. 1993;1:81–88.PubMedGoogle Scholar
  9. 9.
    Patlak JB. Molecular kinetics of voltage-dependent Na channels. Physiol. Rev. 1991;71:1047–1080.PubMedGoogle Scholar
  10. 10.
    Hille B. Ionic channels of excitable membranes. 2nd ed., Sunderland, USA: Sinauer Ass; 1992.Google Scholar
  11. 11.
    Aldrich RW. Inactivation of voltage gated delayed potassium current in moluscan neurons. Biophys J. 1981;36:519–532.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Shimon Marom
    • 1
  • Amir Toib
    • 1
  • Erez Braun
    • 2
  1. 1.Rappaport Institute of Medical ScienceHaifaIsrael
  2. 2.Technion-IITHaifaIsrael

Personalised recommendations