Skip to main content

Toward Modeling the Human Physionome

  • Chapter
Book cover Molecular and Subcellular Cardiology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 382))

Abstract

The physionome is the description of the physiological dynamics of the normal intact organism. The march of science brings us now into the era where integration of the various facets of the knowledge of biology and medicine has become a major issue. Modeling is a vehicle for the combining of information from molecular biology, biophysics, and medical biology, but must be combined with strategies for databasing the raw data with greater efficiency than is currently possible. The lessons from the genome project can be applied to the next level major projects, the morphonome and the physionome, the objective being to put integrated forms of the data into the hands of physicians and medical scientists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Glass L, Hunter P. There is a theory of heart. Physica D. 1990;43:1–16.

    Article  Google Scholar 

  2. Westerhof N. Physiological hypotheses-intramyocardial pressure. A new concept, suggestions for measurement. Basic Res Cardiol 1990;85:105–119.

    Article  PubMed  CAS  Google Scholar 

  3. Jalife J. Mathematical Approaches to Cardiac Arrhythmias. New York, NY: New York Acad. Sci.; 1990.

    Google Scholar 

  4. Kohn MC, Garfinkel D. Computer simulation of ischemic rat heart purine metabolism: I. Model construction. Am J Physiol 1977;232 (Heart Circ Physiol 1):H386–H393.

    PubMed  CAS  Google Scholar 

  5. Kohn MC, Garfinkel D. Computer simulation of ischemic rat heart purine metabolism: II. Model behavior. Am J Physiol 1977;232 (Heart Circ Physiol 1):H394–H399.

    PubMed  CAS  Google Scholar 

  6. Beard D, Bassingthwaighte JB. Fractal nature of myocardial blood flow described by whole organ model of arterial network. Ann Biomed Eng. 1994 ; 22 (Suppl.l): 20.

    Google Scholar 

  7. Luo CH, Rudy Y. A dynamic model of the cardiac ventricular action potential: II: Afterdepolarizations, triggered activity, and potentiation. Circ Res. 1994;74:1097–1113.

    Article  PubMed  CAS  Google Scholar 

  8. Kohn MC, Garfinkel D. Computer simulation of metabolism in palmitate-perfused rat heart: I. Palmitate oxidation. Ann Biomed Eng. 1983;11:361–384.

    Article  PubMed  CAS  Google Scholar 

  9. Kohn MC, Garfinkel D. Computer simulation of metabolism in palmitate-perfused rat heart: II.Behavior of complete model. Ann Biomed Eng. 1983;11:511–531.

    Article  PubMed  CAS  Google Scholar 

  10. Johnson EA, Shepherd N. Models of the force-frequency relationship of rabbit papillary muscle. Cardiovasc Res. 1971;Supplement.1:101–108.

    Article  PubMed  Google Scholar 

  11. Bassingthwaighte JB, Reuter H. Calcium movements and excitation-contraction coupling in cardiac cells. In: DeMello WC, ed. Electrical Phenomena in the Heart. New York: Academic Press, Inc.; 1972:353–395.

    Google Scholar 

  12. Varghese A, Winslow RL. Dynamics of the calcium subsystem in cardiac Purkinje fibers. Physica D. 1993;68:364–386.

    Article  CAS  Google Scholar 

  13. Wong AYK, Fabiato A, Bassingthwaighte JB. Model of calcium-induced calcium release mechanism in cardiac cells. Bull Math Biol. 1992;54:95–116.

    Google Scholar 

  14. Wong AYK. A kinetic model of coronary reactive hyperemic response to transient ischemia. Bull Math Biol. 1995;57:137–156.

    PubMed  CAS  Google Scholar 

  15. Greene AS, Tonellato PJ, Lombard J, Cowley AW Jr.. The contribution of microvascular rarefaction to tissue oxygen delivery in hypertension. Am J Physiol. 1992;31 (Heart Circ Physiol.):H1486–H1493.

    Google Scholar 

  16. Cook-Deegan RM. The Gene Wars: Science, Politics, and the Human Genome. New York, NY: W. W. Norton; 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bassingthwaighte, J.B. (1995). Toward Modeling the Human Physionome. In: Sideman, S., Beyar, R. (eds) Molecular and Subcellular Cardiology. Advances in Experimental Medicine and Biology, vol 382. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1893-8_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1893-8_32

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5772-8

  • Online ISBN: 978-1-4615-1893-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics