Skip to main content

Myocardial Constitutive Laws for Continuum Mechanics Models of the Heart

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 382))

Abstract

Myocardial constitutive laws, for use in anatomically accurate finite element models of the heart, are presented for the passive and active mechanical properties of cardiac muscle. Biaxial testing of tissue sheets together with observations of tissue microstructure are used to define a “pole-zero” strain energy function for passive myocardium. A “fading memory” model of actively developed tension is based here on published work on the active properties of cardiac trabeculae.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hunter PJ, Smaill BH. The analysis of cardiac function-a continuum approach. Prog Biophys Molec Biol 1989;52:101–164.

    Article  Google Scholar 

  2. Nielsen PMF, LeGrice IJ, Smaill BH, Hunter PJ. A mathematical model of the geometry and fibrous structure of the heart. Am J Physiol 1991;29(4):H1365–H1378.

    Google Scholar 

  3. McCulloch AD, Guccione J, Waldman LK, Rogers JM. Large scale finite element analysis of the beating heart. In: Pilkington TC, Loftis B, Thompson JF, Woo SL-Y, Palmer TC, Budinger TF, eds. High Performance Computing in Biomedical Research, Florida: CRC Press, 1993; 27–49.

    Google Scholar 

  4. Smaill BH, Hunter PJ. Structure and function of the diastolic heart: Material properties of passive myocardium. In: Glass L, Hunter PJ, McCulloch AD, eds. Theory of Heart: Biomechanics, Biophysics and Nonlinear Dynamics of Cardiac Function. New York: Springer-Verlag, 1991; 1–29.

    Google Scholar 

  5. Nielsen PMF, Hunter PJ, Smaill BH. Biaxial testing of biomaterials: Testing equipment and procedures. ASME J Biomech Eng. 1991;113:295–300.

    Article  CAS  Google Scholar 

  6. Eringen AC. Mechanics of Continua. New York:Krieger, 1980.

    Google Scholar 

  7. ter Keurs HEDJ, Rijnsburger WH, van Heuningen R, Nagelsmit MJ. Tension development and sarcomere length in rat cardiac trabeculae. Evidence of length-dependent activation. Circ Res. 1980;46:703–714.

    Article  PubMed  Google Scholar 

  8. de Tombe PP, ter Keurs HEDJ. Force and velocity of sarcomere shortening in trabeculae from rat heart. Effects of temperature. Circ Res. 1990;66:1239–1254.

    Article  PubMed  Google Scholar 

  9. de Tombe PP, ter Keurs HEDJ. Sarcomere dynamics in cat cardiac trabeculae. Circ Res. 1991;68:588–596.

    Article  PubMed  Google Scholar 

  10. Hill AV. Heat of shortening and the dynamic constants of muscle. Proc Roy Soc B. 1938;126:136–195.

    Article  Google Scholar 

  11. de Tombe PP, ter Keurs HEDJ. An internal viscous element limits unloaded velocity of sarcomere shortening in rat myocardium. J Physiol 1992;454:619–642.

    PubMed  Google Scholar 

  12. Bergel DH, Hunter PJ. The mechanics of the heart. Chapt. 4. In: Hwang HHC, Gross DR, Patel DJ, eds. Quantitative Cardiovascular Studies, Clinical and Research Applications of Engineering Principles. Baltimore: University Park Press, 1979; 151–213.

    Google Scholar 

  13. Huxley AF, Simmons RM. Proposed mechanism of force generation in striated muscle. Nature 1971;233:533–538.

    Article  PubMed  CAS  Google Scholar 

  14. Huxley AF. Muscle structure and theories of contraction. Prog Biophys Chem. 1957;7:255–318.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hunter, P.J. (1995). Myocardial Constitutive Laws for Continuum Mechanics Models of the Heart. In: Sideman, S., Beyar, R. (eds) Molecular and Subcellular Cardiology. Advances in Experimental Medicine and Biology, vol 382. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1893-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1893-8_30

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5772-8

  • Online ISBN: 978-1-4615-1893-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics