Skip to main content

Integration of Structure, Function and Mass Transport in the Myocardium

  • Chapter
Book cover Molecular and Subcellular Cardiology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 382))

  • 110 Accesses

Abstract

A left ventricular (LV) model that integrates muscle mechanics, coronary flow, and fluid transport, and accounts for the three-phase (fiber-blood-interstitium) myocardial structure and composition, is used to study the interactions between the mechanics, coronary flow and fluid and mass transport in the myocardium. Theoretical simulations elucidate the effects of ventricular load, coronary perfusion pressure, and fluid and mass transport on ventricular performance and coronary dynamics. The analysis yields a direct relation between cardiac function and structure to cardiac mechanics, coronary flow, and intramyocardial fluid (and mass) transport, and allows to study the interactions between coronary flow, ventricular and myocardial mechanics and intramyocardial fluid shifts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kouwenhoven E, Vergroesem Y, Spaan JAE. Retrograde coronary flow is limited by time-varying elastance. Am J Physiol 1992;263:H484–H490.

    PubMed  CAS  Google Scholar 

  2. Kresh JY. Myocardial modulation of coronary circulation (letter). Am J Physiol. 1989;257: H1934–H1935.

    Google Scholar 

  3. Fukui A, Yamaguchi S, Tamada Y, Miyawaki H, Baniya G, Shirakabe M. Different effects of coronary perfusion pressure on diastolic properties of left and right ventricles (Abstract). Circulation 1991; 84:II–45.

    Google Scholar 

  4. Kresh JY, Frash F, McVey M, Brockman SK, Noordergraaf A. Mechanical coupling of the myocardium with coronary circulation in the beating and arrested heart (Abstract). Circulation. 1990; 84:II–45.

    Google Scholar 

  5. McCulloch AD, Hunter PJ, Smaill BH. Mechanical effects of coronary perfusion in the passive canine left ventricle. Am J Physiol 1992;262:H523–H530.

    PubMed  CAS  Google Scholar 

  6. Anderson SE, Johnson JA. Tissue-fluid pressure measured in perfused rabbit hearts during osmotic transients. Am J Physiol 1987;252:H1127–H1137.

    PubMed  CAS  Google Scholar 

  7. Arts T, Veenstra PC, Reneman RS. Transmural course of stress and sarcomere length in the left ventricle under normal hemodynamic circumstances. In: Baan J, Arntsenius AC, Yellin EL, eds, Cardiac Dynamics. The Hague: Martinus Nijhoff, 1980; 115–122.

    Chapter  Google Scholar 

  8. Beyar R, Sideman S. A computer study of the left ventricular performance based on fiber structure, sarcomere dynamics and transmural electrical propagation velocity. Circ Res. 1984;55:358–375.

    Article  PubMed  CAS  Google Scholar 

  9. Beyar R, Ben-Ari R, Gibbons-Kroeker CA, Tyberg JV, Sideman S. The effect of interconnecting collagen fibers on LV function and intramyocardial compression. Cardiovasc Res. 1993;27(12): 2254–2263.

    Article  PubMed  CAS  Google Scholar 

  10. Chadwick RS. Mechanics of the left ventricle. Biophys J. 1980;39:279–288.

    Article  Google Scholar 

  11. Huyghe JM, Arts T, van Campen DH, Reneman RS. Porous medium finite element model of the beating left ventricle. Am J Physiol 1992;262:H1256–H1267.

    PubMed  CAS  Google Scholar 

  12. Nevo E, Lanir Y. Structural finite deformation model of the left ventricle during diastole and systole. J Biomech Eng Trans ASME. 1989;111:342–349.

    Article  CAS  Google Scholar 

  13. Ohayon J, Chadwick RS. Effects of collagen microstructure in the mechanics of the left ventricle. Biophys J. 1988;54:1077–1088.

    Article  PubMed  CAS  Google Scholar 

  14. Beyar R, Sideman S. Time dependent coronary blood flow distribution in the left ventricular wall. Am J Physiol 1987;252:H417–H433.

    PubMed  CAS  Google Scholar 

  15. Chadwick RS, Tedgui A, Michel JB, Ohayon J, Levy BI. Phasic regional myocardial inflow and outflow: comparison of theory and experiments. Am J Physiol 1990;258:H1687–H1698.

    PubMed  CAS  Google Scholar 

  16. Kresh JY, Fox M, Brockman SK, Noordergraaf A. Model-based analysis of transmural vessel impedance and myocardial circulation dynamics. Am J Physiol 1990;258:H262–H276.

    PubMed  CAS  Google Scholar 

  17. Bruinsma P, Arts T, Dankelman J, Spaan JAE. Model of the coronary circulation based on pressure dependence of coronary resistance and compliance. Bas Res Card. 1988;83:510–524.

    Article  CAS  Google Scholar 

  18. Downey JM, Kirk ES. Inhibition of coronary flow by vascular waterfall mechanism. Circ Res. 1975;36:753–760.

    Article  PubMed  CAS  Google Scholar 

  19. Spaan JAE, Breuls N, Laired J. Diastolic systolic coronary flow differences are caused by intramyocardial pump action in the anesthetized dog. Circ Res. 1981;49:584–593.

    Article  PubMed  CAS  Google Scholar 

  20. Krams R, Sipkema P, Westerhof N. Coronary oscillatory flow amplitude is more affected by perfusion pressure than ventricular pressure. Am J Physiol 1990;258:H1889–H1898.

    PubMed  CAS  Google Scholar 

  21. Krams R, Sipkema P, Westerhof N. Varying elastance concept may explain coronary systolic flow impediment. Am J Physiol 1989;257:H1471–H1479.

    PubMed  CAS  Google Scholar 

  22. Zinemanas D, Beyar R, Sideman S. Effects of myocardial contraction on coronary blood flow: an integrated model, transport. Annals Biomed Eng. 1994;22(6):638–652.

    Article  CAS  Google Scholar 

  23. Rubboli A, Sobotka PA, Euler DE. Effect of acute edema on left ventricular function and coronary vascular resistance in the isolated rat heart. Am J Physiol. 1994;267:H1054–H1061.

    PubMed  CAS  Google Scholar 

  24. Zinemanas D, Beyar R, Sideman S. Intramyocardial fluid transport effects on coronary flow and LV mechanics. In: Sideman S, Beyar R, eds, Interactive Phenomena in the Cardiac System. New York: Plenum Press, 1993; 219–231.

    Chapter  Google Scholar 

  25. Zinemanas D, Beyar R, Sideman S. Relating muscle mechanics, blood flow and mass transport interactions in the LV wall. Int J Heat & Mass Trans. 1994;37:191–205.

    Article  Google Scholar 

  26. Zinemanas D, Beyar R, Sideman S. An integrated model of LV muscle mechanics, coronary flow and fluid and mass transport. Am J Physiol. 1995;268: (in press).

    Google Scholar 

  27. Gonzalez F, Bassingthwaigthe JB. Heterogeneities in regional volumes of distribution and flows in rabbit heart. Am J Physiol 1990;258:H1012–H1024.

    PubMed  CAS  Google Scholar 

  28. Beyar R, Caminker R, Manor D, Sideman S. Coronary flow patterns in normal and ischemic hearts: Transmyocardial and artery to vein distribution. Annals Biomed Eng. 1993;21:435–458.

    Article  CAS  Google Scholar 

  29. Kedem O, Katchalsky A. Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim Biophys Acta. 1958;27:229–246.

    Article  PubMed  CAS  Google Scholar 

  30. Baird RJ, Manktelow RT, Shah PA, Ameli FM. Intramyocardial pressure. A study of its regional variations and its relationship to intraventricular pressure. J Thor Card Surg. 1970;59:810–823.

    CAS  Google Scholar 

  31. Cantin B, Rouleau JR. Myocardial tissue pressure and blood flow during coronary sinus pressure modulation in anesthetized dogs. J Appl Physiol 1992;73:2184–2191.

    PubMed  CAS  Google Scholar 

  32. Rabbany SY, Kresh JY, Noordergraaf A. Intramyocardial pressure: interaction of myocardial fluid pressure and fiber stress. Am J Physiol. 1989;257:H357–H364.

    PubMed  CAS  Google Scholar 

  33. Stein PD, Sabbah HN, Marzili M. Intramyocardial pressure and coronary extravascular resistance. J Biomech Eng Trans ASME. 1985;107:46–50.

    Article  CAS  Google Scholar 

  34. Stein PD, Marzili M, Sabbah HN, Lee T. Systolic and diastolic pressure gradients within the left ventricular wall. Am J Physiol 1980;238:H625–H630.

    PubMed  CAS  Google Scholar 

  35. Krams R, Sipkema P, Zegers J, Westerhof N. Contractility is the main determinant of coronary systolic flow impediment. Am J Physiol 1989;257:H1936–H1944.

    PubMed  CAS  Google Scholar 

  36. Doucette JW, Goto M, Hynn AE, Austin RE Jr, Husseini W, Hoffmian JIE. Effects of cardiac contraction and cavity pressure on myocardial blood flow. Am J Physiol. 1993;265:H1342–H1352.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zinemanas, D., Beyar, R., Sideman, S. (1995). Integration of Structure, Function and Mass Transport in the Myocardium. In: Sideman, S., Beyar, R. (eds) Molecular and Subcellular Cardiology. Advances in Experimental Medicine and Biology, vol 382. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1893-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1893-8_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5772-8

  • Online ISBN: 978-1-4615-1893-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics