Vascular Gene Therapy

  • Moshe Y. Flugelman
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 382)


Gene therapy is emerging as a new and exciting therapeutic modality for cardiovascular pathology. The work reported here was carried out in the National Heart, Lung and Blood Institute (NHLBI) in Bethesda, MD, USA, where genetically engineered endothelial cells were used to seed endovascular prostheses and cell adhesion to the prostheses was tested both in vitro and in vivo. Two catheter based systems were used to deliver genes to the arterial wall cells in vivo, employing retroviral and adenoviral vectors. Efficient gene transfer to vascular cells in vivo was achieved with adenoviral vectors.


Gene Therapy Gene Transfer Adenoviral Vector Smooth Muscle Cell Proliferation Stent Deployment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mulligan RC. The basic science of gene therapy. Science. 1993;260:926–932.PubMedCrossRefGoogle Scholar
  2. 2.
    Anderson WF. Human gene therapy. Science. 1992;256:808–813.PubMedCrossRefGoogle Scholar
  3. 3.
    Swain JL. Gene therapy; anew approach to the treatment of cardiovascular disease. Circulation. 1989;80:1495–1496.PubMedCrossRefGoogle Scholar
  4. 4.
    Schneider M, French BA. The advent of Adenovirus-Gene therapy for cardiovascular disease. Circulation. 1993;88:1937–1942.PubMedCrossRefGoogle Scholar
  5. 5.
    Nabel EG, Plautz G, Boyce FM, Stanley JC, Nabel GJ. Recombinant gene expression in vivo within endothelial cells of the arterial wall. Science. 1989;244:1342–1344.PubMedCrossRefGoogle Scholar
  6. 6.
    Flugelman MY, Leon MB, Bowman RL, Virmani R, Anderson WF, Dichek DA. Retention of seeded cells on balloon expanded stents under flow conditions. Circulation. 1990;82(Supl. III):72.Google Scholar
  7. 7.
    Flugelman MY, Virmani R, Leon MB, Bowman RL, Dichek DA. Genetically engineered endothelial cells remain adherent and viable after stent deployment and exposure to flow in vitro. Circ Res. 1992;70:348–354.PubMedCrossRefGoogle Scholar
  8. 8.
    Flugelman MY, Rome JJ, Virmani R, Newman KD, Dichek DA. Detection of genetically engineered endothelial cells seeded on endovascular prosthesis ten days after in vivo deployment. J Mol Cell Cardiol. 1993;25 (supp I):S.38.Google Scholar
  9. 9.
    Rome JJ, Shayani V, Flugelman MY, Newman KD, Farb A, Virmani R, Dichek DA. Anatomic barriers determine the distribution of in vivo gene transfer into the arterial wall: modeling with microscopic tracer particles and verification with a recombinant adenoviral vector. Atherosclerosis & Thrombosis 1994;14:148–161.CrossRefGoogle Scholar
  10. 10.
    Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993;362:801–809.PubMedCrossRefGoogle Scholar
  11. 11.
    Flugelman MY, Virmani R, Correa R, Yu Z-X, Farb A, Leon BM, Fu YM, Casscells W, Epstein SE. Smooth muscle cell abundance and fibroblast growth factors in coronary lesions of patients with non fatal unstable angina: a clue to the mechanism of transformation from the stable to the unstable clinical state. Circulation. 1993;88:2493–2500.PubMedCrossRefGoogle Scholar
  12. 12.
    Serruys PW, de Jaegere P, Kiemeneij, et al. A comparison of balloon expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. N Engl J Med. 1994;331:489–495.PubMedCrossRefGoogle Scholar
  13. 13.
    Fischman DL, Leon MB, Baim DS, et al. A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. N Engl J Med. 1994;331:496–501.PubMedCrossRefGoogle Scholar
  14. 14.
    Flugelman MY, Jaklitsch MT, Newman KD, Casscells SW, Bratthuaer GL, Dichek DA. Low levels in vivo gene transfer into the arterial wall through a perforated balloon catheter. Circulation. 1992;85:1110–1117.PubMedCrossRefGoogle Scholar
  15. 15.
    Coghlan A. Gene superclub signs up top players. New Scientist. 1994;1952:4.Google Scholar
  16. 16.
    Banai S, Shou M, Correa R, Jaklitsch MT, Douek PC, Booner RF, Epstein SE, Unger EF. Rabit ear model of injury induced arterial smooth muscle cell proliferation. Circ Res. 1991;69:748–756.PubMedCrossRefGoogle Scholar
  17. 17.
    Lee SW, Trapnell BC, Rade JJ, Virmani R, Dichek DA. in vivo adenoviral vector-mediated gene transfer into balloon-injured rat carotid arteries. Circ Res. 1993;73:797–807.PubMedCrossRefGoogle Scholar
  18. 18.
    Schulick AH, newman KD, Dichek DA. A therapeutic window for in vivo adenoviral vector mediated gene transfer. Circulation 1994;90(Supl 4):I–516.Google Scholar
  19. 19.
    Reissen R, Isner JM. Prospects for site-specific delivery of pharmacologic and molecular therapies. J Am Coll Cardiol. 1994;23:1234–1244.CrossRefGoogle Scholar
  20. 20.
    Plante S, Dupuis G, Mongeau CJ, Durand P. Porous balloon catheters for local delivery: assessment of vascular damage in a rabbit iliac angioplasty model. J Am Coll Cardiol. 1994;24:820–824.PubMedCrossRefGoogle Scholar
  21. 21.
    Feldman LJ, Steg PG, Zheng LP, Kearney M,Barry JJ, Perricaudet M, Isner JM. Percutaneous adeno-mediated gene delivery to normal and atherosclerotic arteries in vivo: a comparative study. Circulation. 1994;90(Supl 4):I–517.Google Scholar
  22. 22.
    Shweiki D, Itin A, soffer D, Keshet E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature. 1992;359:843–845.PubMedCrossRefGoogle Scholar
  23. 23.
    Ferrara N, Houck K A, Jakeman L B, Winer J, Leung DW. The vascular endothelial growth factor family of polypeptides. J Cell Biochem. 1991;47:211–218.PubMedCrossRefGoogle Scholar
  24. 24.
    Ohno T, Gordon D, San H, Pompili VJ, Imperiale MJ, Nabel GJ, Nabel EG. Gene therapy for vascular smooth muscle cell proliferation after arterial injury. Science. 1994;265:781–84.PubMedCrossRefGoogle Scholar
  25. 25.
    Morishita R, Gibbons GH, Ellison KE, Nakajima Masatoshi, von der Leyen H, Zhang L, Kaneda Y, Ogihara T, Dzau VJ. Intimal hyperplasia after vascular injury is inhibited by antisense cdk 2 kinase oligonucleotides. J Clin Invest. 1994;93:1458–1464.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Moshe Y. Flugelman
    • 1
  1. 1.Department of Cardiology, and the Technion Medical SchoolLady Davis Carmel Medical CenterHaifaIsrael

Personalised recommendations