Skip to main content

Mechanisms of Endocardial Endothelium Modulation of Myocardial Performance

  • Chapter
Molecular and Subcellular Cardiology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 382))

Abstract

The endocardial endothelium (EE) modulates the performance of the subjacent myocardium and plays an important role in regulation of cardiac function. This modulation has been confirmed in a number of different species and in both in vitro and in vivo conditions. The mechanisms of EE modulation of myocardial performance are still under investigation and the possibilities include the role of EE as a transendothelial physico-chemical barrier and/or the release of various chemical messengers by the EE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brutsaert DL, Meulemans AL, Sipido KR, Sys SU. Effects of damaging the endocardial surface on the mechanical performance of isolated cardiac muscle. Circ Res. 1988;62:357–366.

    Article  Google Scholar 

  2. Allen DG, Kentish JC. The cellular basis of the length-tension relation in cardiac muscle. J Mol Cell Cardiol 1985;17:821–840.

    Article  PubMed  CAS  Google Scholar 

  3. Hibberd MG, Jewell BR. Calcium and length-dependent force production in rat ventricular muscle. J Physiol Lond. 1982;329:527–540.

    PubMed  CAS  Google Scholar 

  4. Li K, Rouleau JL, Calderone A, Andries JL, Brutsaert DL. Endocardial function in pacing-induced heart failure in the dog. J Mol Cell Cardiol 1993;25:529–540.

    Article  PubMed  CAS  Google Scholar 

  5. Li K, Stewart DJ, Rouleau J-L. Myocardial contractile actions of endothelin-1 in rat and rabbit papillary muscles. Role of endocardial endothelium. Circ Res. 1991; 69:301–312.

    CAS  Google Scholar 

  6. Ramaciotti C, McClellan G, Sharkey A, Rose D, Weisberg A, Winegrad S. Cardiac endothelial cells modulate contractility of rat heart in response to oxygen tension and coronary flow. Circ Res. 1993;72:1044–1064.

    Article  PubMed  CAS  Google Scholar 

  7. Ramaciotti C, Sharkey A, Mcclellan G, Winegrad S. Endothelial cells regulate cardiac contractility. Proc Nat Acad Sci USA. 1992; 89:4033–4036.

    Article  PubMed  CAS  Google Scholar 

  8. Shah AM, Smith JA, Lewis MJ. The role of endocardium in the modulation of contraction of isolated papillary muscles of the ferret. J Cardiovasc Pharmacol. 1991; 17(S3):S251–S257.

    Article  Google Scholar 

  9. Wang JX, Morgan JP. Endocardial endothelium modulates myofilament Ca++ responsiveness in aequorin-loaded ferret myocardium. Circ Res. 1992; 70:754–760.

    Article  PubMed  CAS  Google Scholar 

  10. Gillebert TC, De Hert SG, Andries LJ, Jageneau AH, Brutsaert DL. Intracavitary ultrasound impairs left ventricular performance: presumed role of endocardial endothelium. Am J Physiol. 1992; 263:H857–H865.

    PubMed  CAS  Google Scholar 

  11. Fort S, Lewis MJ, Shah AM. The role of endocardial endothelium in the modulation of myocardial contraction in the isolated heart. Cardioscience. 1993:4;217–223.

    PubMed  CAS  Google Scholar 

  12. Meulemans AL, Sipido KR, Sys SU, Brutsaert DL. Atriopeptin III induces early relaxation of isolated mammalian papillary muscle. Circ Res. 1988; 62:1171–1174.

    Article  PubMed  CAS  Google Scholar 

  13. Meulemans AL, Andries LJ, Brutsaert DL. Endocardial endothelium mediates positive inotropic response to alpha 1-adrenoreceptor agonist in mammalian heart. J Mol Cell Cardiol. 1990; 22:667–685.

    Article  PubMed  CAS  Google Scholar 

  14. Schoemaker IE, Meulemans AL, Andries LJ, Brutsaert DL. Role of the endocardial endothelium in the positive inotropic action of vasopressin. Am J Physiol. 1990; 259:H1148–1151.

    PubMed  CAS  Google Scholar 

  15. Shah AM, Andries LJ, Meulemans AL, Brutsaert DL. Endocardium modulates inotropic response to 5-hydroxytryptamine. Am J Physiol. 1989; 257:H1790–H1797.

    PubMed  CAS  Google Scholar 

  16. Li K, Rouleau JL, Andries LJ, Brutsaert DL. Effect of dysfunctional vascular endothelium on myocardial performance in isolated papillary muscles. Circ Res. 1993; 72:768–777.

    Article  PubMed  CAS  Google Scholar 

  17. Brutsaert DL, Andries LJ. The endocardial endothelium Am J Physiol. 1992; 263:H985–H1002.

    PubMed  CAS  Google Scholar 

  18. Brutsaert DL. The endocardium. Annu Rev Physiol. 1989; 51:263–273.

    Article  PubMed  CAS  Google Scholar 

  19. Fransen PF, Demolder MJM, Brutsaert DL. Whole-cell membrane currents in cultured pig endocardial cells. Am J Physiol. 1994; in press.

    Google Scholar 

  20. Shah AM, Shattock MJ, Lewis MJ. Action potential duration and endocardial modulation of myocardial contraction. Cardiovasc Res. 1992;26:376–378.

    Article  PubMed  CAS  Google Scholar 

  21. Meulemans AL, Andries LJ, Brutsaert DL. Does endocardial endothelium mediate positive inotropic response to angiotensin I and angiotensin II? Circ Res. 1990; 66:1591–1601.

    Article  PubMed  CAS  Google Scholar 

  22. Smith JA, Shah AM, Lewis MJ. Factors released from endocardium of the ferret and pig modulate myocardial contraction. J Physiol. 1991; 439:1–14.

    PubMed  CAS  Google Scholar 

  23. Schulz R, Smith JA, Lewis MJ, Moncada S. Nitric oxide synthase in cultured endocardial cells of the pig. Br J Pharmacol. 1991;104:21–24.

    Article  PubMed  CAS  Google Scholar 

  24. Shah AM, Mebazaa A, Wetzel RC, Lakatta EG. Novel cardiac myofilament desensitizing factor released by endocardial and vascular endothelial cells. Circulation. 1994;89:2492–2497.

    Article  PubMed  CAS  Google Scholar 

  25. Ku DD, Nelson JM, Caulfield JB, Winn MJ. Release of endothelium-derived relaxing factors from canine cardiac valves. J Cardiovasc Pharmacol. 1990;16:212–218.

    Article  PubMed  CAS  Google Scholar 

  26. Shah AM, Lewis MJ, Henderson AH. Effects of 8-bromo-cyclic GMP on contraction and on inotropic response of ferret cardiac muscle. J Mol Cell Cardiol. 1991;23:55–64.

    Article  PubMed  CAS  Google Scholar 

  27. Shah AM, Spurgeon HA, Sollot SJ, Talo A, Lakatta EG. 8-bromo-cGMP reduces the myofilament response to Ca2+ in intact cardiac myocytes. Circ Res. 1994;74:970–978.

    Article  PubMed  CAS  Google Scholar 

  28. Mohan P, Sys SU, Brutsaert DL. Nitric oxide donors induce a positive inotropic effect mediated by cGMP in isolated cardiac muscle without endothelium. Eur Heart J. 1994;15:145.

    Google Scholar 

  29. Ignarro LJ. Biological actions and properties of endothelium-derived nitric oxide formed and released from artery and vein. Circ Res. 1989;65:1–21.

    Article  PubMed  CAS  Google Scholar 

  30. Leite-Moreira AF, Mohan P, Sys SU, Brutsaert DL. Myocardial positive inotropic effect of dibutyryl-cyclic GMP in vivo. Eur Heart J. 1994;15:114.

    Article  Google Scholar 

  31. Mohan P, Brutsaert DL, Sys SU. Inotropic effect of acetylcholine: role of endocardial endothelium. Eur Heart J. 1994;15:283.

    Google Scholar 

  32. Klabunde RE, Ritger RC, Helgren MC. Cardiovascular actions of inhibitors of endothelium-derived relaxing factor (nitric oxide) formation/ release in anesthetized dogs. Eur J Pharmacol. 1991;199:51–59.

    Article  PubMed  CAS  Google Scholar 

  33. Klabunde RE, Ritger RC. NG-Monomethyl-L-arginine (NMA) restores arterial blood pressure but reduces cardiac output in a canine model of endotoxic shock. Biochem Biophys Res Commun 1991;178:1135–1140.

    Article  PubMed  CAS  Google Scholar 

  34. Richard V, Berdeaux A, la Rochelle CD, Guidicelli J-F. Regional coronary hemodynamic effects of two inhibitors of nitric oxide synthesis in anesthetized, open chest dogs. Br J Pharmacol. 1991;104:59–64.

    Article  PubMed  CAS  Google Scholar 

  35. Hasebe N, Shen YT, Vatner SF. Inhibition of endothelium-derived relaxing factor enhances myocardial stunning in conscious dogs. Circulation. 1993;88:2862–2871.

    Article  PubMed  CAS  Google Scholar 

  36. Stamler JS, Loh E, Roddy MA, Currie, Creager MA. Nitric oxide regulates basal systemic and pulmonary vascular resistance in healthy humans. Circulation. 1994;89:2035–2040.

    Article  PubMed  CAS  Google Scholar 

  37. Berridge MJ. Cell signalling: a tale of two messengers. Nature. 1993;365:388–389.

    Article  PubMed  CAS  Google Scholar 

  38. Cheung Lee H. A signalling pathway involving cyclic ADP-ribose, cGMP, and nitric oxide. News in Physiol Sci. 1994;9:134–137.

    Google Scholar 

  39. Galione A, Cheung Lee H, Busa WB. Ca2+-induced Ca2+ release in sea urchin egg homogenates: modulation by cyyclic ADP-ribose. Science. 1991;253:1143–1146.

    Article  PubMed  CAS  Google Scholar 

  40. Galione A. Cyclic ADP-ribose: a new way to control calcium. Science. 1993;259:325–326.

    Article  PubMed  CAS  Google Scholar 

  41. Mészáros LG, Bak J, Chu A. Cyclic ADP-ribose as an endogenous regulator of the non-skeletal type ryanodine receptor Ca2+ channel. Nature. 1993;364:76–79.

    Article  PubMed  Google Scholar 

  42. Galione A, White A, Willmott N, Turner M, Potter BVL, Watson SP. cGMP mobilizes intracellular Ca2+ in sea urchin eggs by stimulating cyclic ADP-ribose synthesis. Nature. 1993;365:456–459.

    Article  PubMed  CAS  Google Scholar 

  43. Ono K, Trautwein W. Potentiation by cyclic GMP of a-adrenergic effect on Ca2+ current in guineapig ventricular cells. J Physiol (Lond). 1991;443:387–404.

    CAS  Google Scholar 

  44. Beavo JA, Reifsnyder DH. Primary sequence of cyclic nucleotide phosphodiesterase isozymes and the design of selective inhibitors. Trends Pharmacol Sci. 1990;11:150–155.

    Article  PubMed  CAS  Google Scholar 

  45. Walter U. Physiological role of cGMP and cGMP-dependent protein kinase in the cardiovascular system. Rev Physiol Biochem Pharmacol. 1989;113:42–48.

    Google Scholar 

  46. Levi RC, Alloatti G, Fischmeister R. Cyclic GMP regulates the Ca-channel current in guinea pig ventricular myocytes. Pflugers Arch. 1989;413:685–687.

    Article  PubMed  CAS  Google Scholar 

  47. Méry P-F, Lohmann SM, Walter U, Fischmeister R. Ca2+ current is regulated by cyclic GMP-dependent protein kinase in mammalian cardiac myocytes. Proc Natl Acad Sci USA. 1991 ;88:1197–1201.

    Article  PubMed  Google Scholar 

  48. Pfitzer G, Ruegg JC, Hockerzi V, Hofmann F. cGMP protein kinase decreases calcium sensitivity of skinned cardiac fibres. FEBS Lett. 1982;149:171–175.

    Article  PubMed  CAS  Google Scholar 

  49. Méry P-F, Pavoine C, Belhassen L, Pecker F, Fischmeister R. Nitric oxide regulates cardiac Ca2+ current. Involvement of cGMP-inhibited and cGMP-stimulated phosphodiesterases through guanyl cyclase activation. J Biol Chem. 1993;268:26286–26295.

    PubMed  Google Scholar 

  50. Dollinger SJ, Wahler GM. A nitric oxide donor has stimulatory and inhibitory effects on the cardiac calcium current, both of which are inhibited by a G-kinase blocker. Biophysical J. 1994;66:A238.

    Google Scholar 

  51. Brandt R, Nowak J, Sonnenfeld T. Prostaglandin formation from exogenous precursor in homogenates of human cardiac tissue. Basic Res Cardiol. 1984;79:135–141.

    Article  PubMed  CAS  Google Scholar 

  52. Manduteanu I, Popov D, Radu A, Simionescu M. Calf cardiac valvular endothelial cells in culture: production of glycosaminoglycans, prostacyclin and fibronectin. J Mol Cell Cardiol. 1988; 20:103–118.

    Article  PubMed  CAS  Google Scholar 

  53. Mebazaa A, Martin LD, Robotham JL, Maeda K, Gabrielson W, Wetzel RC. Right and left ventricular cultured endocardial endothelium produces prostacyclin and PGE2. J Mol Cell Cardiol. 1993;25(3):245–248.

    Article  PubMed  CAS  Google Scholar 

  54. Mebazaa A, Cherian M, Abraham M, Dodd-o J, Martin L, Wetzel R. Endocardial endothelial prostanoid release responds to flow and hypoxia with response greater than that of the vascular endothelium. Circulation. 1993;88:185.

    Google Scholar 

  55. Mohan P, Brutsaert DL, Sys SU. Myocardial performance is modulated by interaction of cardiac endothelium-derived nitric oxide and prostaglandins. Cardiovasc Res. 1995; in press.

    Google Scholar 

  56. Mebazaa A, Mayoux E. Maeda K, Martin LD, Lakatta EG, Robotham JL, Shah AM. Paracrine effects of endocardial endothelial cells on myocyte contraction mediated via endothelin. Am J Physiol. 1993;265(Heart Circ Physiol. 34):H1841–H1846.

    PubMed  CAS  Google Scholar 

  57. McClellan G, Weisberg A, Rose D, Winegrad S. Endothelial cell storage and release of endothelin as a cardioregulatory mechanism. Circ Res. 1994;75:8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mohan, P., Sys, S.U., Brutsaert, D.L. (1995). Mechanisms of Endocardial Endothelium Modulation of Myocardial Performance. In: Sideman, S., Beyar, R. (eds) Molecular and Subcellular Cardiology. Advances in Experimental Medicine and Biology, vol 382. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1893-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1893-8_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5772-8

  • Online ISBN: 978-1-4615-1893-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics