Metabolic Oscillations in Heart Cells

  • Brian O’Rourke
  • Brian M. Ramza
  • Dmitry N. Romashko
  • Eduardo Marban
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 382)


Oscillatory rhythms underlie biological processes as diverse and fundamental as neuronal firing, secretion, and muscle contraction. We have detected periodic changes in membrane ionic current driven by intrinsic oscillations of energy metabolism in guinea pig heart cells. Withdrawal of exogenous substrates initiated oscillatory activation of ATP-sensitive potassium current and cyclical suppression of depolarization-evoked intracellular calcium transients. The oscillations in membrane current were not driven by pacemaker currents or by alterations in intracellular calcium and thus represent a novel cytoplasmic cardiac oscillator. The linkage to energy metabolism was demonstrated by monitoring oscillations in the oxidation state of pyridine nucleotides. Interventions which altered the rate of glucose metabolism modulated the oscillations, suggesting that the rhythms originated at the level of glycolysis. The metabolic oscillations produced cyclical changes in electrical excitability, underscoring the potential importance of this intrinsic oscillator in the genesis of cardiac arrhythmias.


Membrane Current Heart Cell Glycolytic Intermediate Muscle Extract Electrical Excitability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rapp PE. An atlas of cellular oscillators. J Exp Biol 1979;81:281–306.PubMedGoogle Scholar
  2. 2.
    Tsien RW, Kass RS, Weingart R. Cellular and subcellular mechanisms of cardiac pacemaker oscillations. J Exp Biol 1979;81:205–215.PubMedGoogle Scholar
  3. 3.
    Tsien RW, Tsien RY. Calcium channels, stores, and oscillations. Annu Rev Cell Biol. 1990;6:715–760.PubMedCrossRefGoogle Scholar
  4. 4.
    Andrés V, Schultz V, Tornheim K. Oscillatory synthesis of glucose 1,6-bisphosphate and frequency modulation of glycolytic oscillations in skeletal muscle extracts. J Biol Chem. 1990;265:21441–21447.PubMedGoogle Scholar
  5. 5.
    Hess B, Plesser T. Temporal and spatial order in biochemical systems. Ann NY Acad Sci. 1979;316:203–213.PubMedCrossRefGoogle Scholar
  6. 6.
    Tornheim K. Oscillations of the glycolytic pathway and the purine nucleotide cycle. J Theor Biol. 1979;79:491–541.PubMedCrossRefGoogle Scholar
  7. 7.
    Connor JA. On exploring the basis for slow potential oscillations in the mammalian stomach and intestine. J Exp Biol. 1979;81:153–173.PubMedGoogle Scholar
  8. 8.
    Meech RW. Membrane potential oscillations in molluscan “burster” neurones. J Exp Biol. 1979;81:93–112.PubMedGoogle Scholar
  9. 9.
    Corkey BE, Tornheim K, Deeney JT, Glennon MC, Parker JC, Matschinsky FM, Ruderman NB, Prentki M. Linked oscillations of free Ca2+ and the ATP/ADP ratio in permeabilized RINm5F insulinoma cells supplemented with a glycolyzing cell-free muscle extract. J Biol Chem. 1988;263:4254–4258.PubMedGoogle Scholar
  10. 10.
    O’Rourke B, Ramza BM, Marban E. Oscillations of membrane current and excitability driven by metabolic oscillations in heart cells. Science. 1994;265:962–966.PubMedCrossRefGoogle Scholar
  11. 11.
    Kort AA, Lakatta EG, Marban E, Stern MD, Wier WG. Fluctuations in intracellular calcium concentration and their effect on tonic tension in canine cardiac purkinje fibres. J Physiol (Lond). 1985;367:291–308.Google Scholar
  12. 12.
    Rapp PE, Berridge MJ. Oscillations in calcium-cyclic AMP control loops form the basis of pacemaker activity and other high frequency biological rhythms. J Theor Biol. 1977;66:497–525.PubMedCrossRefGoogle Scholar
  13. 13.
    Collatz K-G, Homing M. Age dependent changes of a biochemical rhythm -the glycolytic oscillator of the blowfly phormia terraenovae. Comp Biochem Physiol. 1990;96:771–774.Google Scholar
  14. 14.
    Frenkel R. Control of reduced diphosphopyridine nucleotide oscillations in beef heart extracts. II. Oscillations of glycolytic intermediates and adenine nucleotides. Arch Biochem Biophys. 1968;125:157–165.PubMedCrossRefGoogle Scholar
  15. 15.
    Eng J, Lynch RM, Balaban RS. Nicotinamide adenine dinucleotide fluorescence spectroscopy and imaging of isolated cardiac myocytes. Biochem J. 1989;55:621–630.Google Scholar
  16. 16.
    Wit AL, Janse MJ. The ventricular arrhythmias of ischemia and infarction: electrophysiological mechanisms. Mount Kisco, Futura, 1993.Google Scholar
  17. 17.
    Hess B. Non-equilibrium dynamics of biochemical processes. Hoppe-Seyler’s Z Physiol Chem. 1983;364:1–20.PubMedCrossRefGoogle Scholar
  18. 18.
    Boiteux A, Goldbeter A, Hess B. Control of oscillating glycolysis of yeast by stochastic, periodic, and steady source of substrate: a model and experimental study. Proc Natl Acad Sci USA. 1975;72:3829–3833.PubMedCrossRefGoogle Scholar
  19. 19.
    Markus M, Kuschmitz D, Hess B. Chaotic dynamics in yeast glycolysis under periodic substrate input flux. FEBS Lett. 1984;172:235–238.PubMedCrossRefGoogle Scholar
  20. 20.
    Aon MA, Cortassa S, Westerhoff HV, Berden JA, Van Spronsen E, Van Dam K. Dynamic regulation of yeast glycolytic oscillations by mitochondrial functions. J Cell Sci. 1991;99:325–334.PubMedGoogle Scholar
  21. 21.
    Tornheim K, Lowenstein JM. The purine nucleotide cycle. IV. Interactions with oscillations of the glycolytic pathway in muscle extracts. J Biol Chem. 1974;249:3241–3247.PubMedGoogle Scholar
  22. 22.
    Ghosh A, Chance B. Oscillations of glycolytic intermediates in yeast cells. Biochem Biophys Res Comm. 1964;16:174–187.PubMedCrossRefGoogle Scholar
  23. 23.
    Hess B, Boiteux A. Mechanism of glycolytic oscillation in yeast. I. Aerobic and anaerobic growth conditions for obtaining glycolytic oscillation. Hoppe-Seyler’s ZPhysiol Chem. 1968;349:1567–1574.CrossRefGoogle Scholar
  24. 24.
    Ibsen KH, Schiller KW. Oscillations of nucleotides and glycolytic intermediates in aerobic suspension of ehrlich ascites tumor cells. Biochim Biophys Acta. 1967;131:405–407.PubMedCrossRefGoogle Scholar
  25. 25.
    Chance B, Schoener B, Elsaesser S. Metabolic control phenomena involved in damped sinusoidal oscillations of reduced diphosphopyridine nucleotide in a cell-free extract of Saccharomyces carlsbergensis. J Biol Chem. 1965;240:3170–3181.PubMedGoogle Scholar
  26. 26.
    Frenkel R. Reduced diphosphopyridine nucleotide oscillations in cell-free extracts from beef heart. Arch Biochem Biophys. 1966;115:112–121.PubMedCrossRefGoogle Scholar
  27. 27.
    Chance B, Schoener B, Elsaesser S. Control of the waveform of oscillations of the reduced pyridine nucleotide level in a cell-free extract. Biochemistry. 1964;52:337–341.Google Scholar
  28. 28.
    Monod J, Wyman J, Changeux J-P. On the nature of allosteric transitions: a plausible model. J Mol Biol 1965;12:88–118.PubMedCrossRefGoogle Scholar
  29. 29.
    Stevenson WG, Stevenson LW, Middlekauff HR, Saxon LA. Sudden death prevention in patients with advanced ventricular dysfunction. Circ. 1993;88:2953–2961.CrossRefGoogle Scholar
  30. 30.
    Chi L, Black SC, Kuo PI, Fagbemi SO, Lucchesi BR. Actions of pinacidil at a reduced potassium concentration: a direct cardiac effect possibly involving the ATP-dependent potassium channel. J Cardiovasc Pharmacol 1993;21:179–190.PubMedCrossRefGoogle Scholar
  31. 31.
    Wolleben CD, Sanguinetti MC, Siegl PKS. Influence of ATP-sensitive potassium channel modulators on ischemia-induced fibrillation in isolated rat hearts. J Mol Cell Cardiol 1989;21:783–788.PubMedCrossRefGoogle Scholar
  32. 32.
    Lynch JJ, Jr., Sanguinetti MC, Kimura S, Bassett AL. Therapeutic potential of modulating potassium currents in the diseased myocardium. FASEB J. 1992;6:2952–2960.PubMedGoogle Scholar
  33. 33.
    Kantor PF, Coatzee WA, Carmeliet EE, Dennis SC, Opie LH. Reduction of ischemic K+ loss and arrhythmias in rat hearts. Effect of glyburide, a sulfonylurea. Circ Res. 1990;66:478–485.PubMedCrossRefGoogle Scholar
  34. 34.
    Gwilt M, Norton B, Henderson CG. Pharmacological studies of K+ loss from ischaemic myocardium in vitro: roles of ATP-dependent K+ channels and lactate-coupled efflux. Eur J Pharmacol 1993;236:107–112.PubMedCrossRefGoogle Scholar
  35. 35.
    Pye EK. Biochemical mechanisms underlying the metabolic oscillations in yeast. Can J Bot. 1969;47:271–285.CrossRefGoogle Scholar
  36. 36.
    Longo EA, Tornheim K, Deeney JT, Varnum BA, Tillotson D, Prentki M, Corkey BE. Oscillations in cytosolic free Ca2+, oxygen consumption, and insulin secretion in glucose-stimulated rat pancreatic islets. J Biol Chem. 1991;266:9314–9319.PubMedGoogle Scholar
  37. 37.
    Chance B, Williamson JR, Jamieson D, Schoener B. Properties and kinetics of reduced pyridine nucleotide fluorescence of the isolated and in vivo rat heart. Biochemische Zeitschrift. 1965;341:357–377.Google Scholar
  38. 38.
    Goldbeter A, Caplan SR. Oscillatory enzymes. Ann Rev Biophys Bioeng. 1976;5:449–476.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Brian O’Rourke
  • Brian M. Ramza
  • Dmitry N. Romashko
  • Eduardo Marban
    • 1
  1. 1.Department of Medicine, Division of CardiologyThe Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations