Autoimmune Recognition of Acetylcholine Receptor and Manipulation of the Autoimmune Responses by Synthetic Peptides

  • M. Zouhair Atassi
  • Minako Oshima
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 383)


A major activity of this laboratory has been focused on the determination and synthesis of the functional sites and regions of immune and autoimmune recognition of protein receptors and the use of the synthetic peptides for manipulation of receptor function. These studies have included insulin receptor (1,2), thyroid-stimulating hormone receptor (3–5) and acetylcholine receptor (AChR). This paper describes some of our studies on the autoimmune recognition of AChR and the use of synthetic peptides corresponding to antibody and/or T-cell autoimmune recognition regions on AChR.


Acetylcholine Receptor Synthetic Peptide Stimulation Index Gene Conversion Event Extracellular Part 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sakata, S., Kobayashi, M., Miura, K. and Atassi, M. Z.(1988) Molecular recognition of human insulin receptor by autoantibodies in a human serum.Immunological Investigations17, 237–242.PubMedCrossRefGoogle Scholar
  2. 2.
    Nakamura, S., Sakata S. and Atassi, M. Z. (1990) Localization and synthesis of an insulin-binding region on human insulin receptor.J. Prot. Chem.9, 229–233.CrossRefGoogle Scholar
  3. 3.
    Atassi, M. Z., Manshouri, T. and Sakata, S. (1991) Localization and synthesis of the hormone-binding regions of the human thyrotropin receptor.Proc. Natl. Acad. Sci. USA88, 3613–3617.PubMedCrossRefGoogle Scholar
  4. 4.
    Sakata, S., Ogawa, T., Matsui, I., Manshouri, T. and Atassi, M. Z. (1992) Biological activities of rabbit antibodies against synthetic human thyrotropin receptor peptides representing thyrotropin binding regions.Biochem. Biophys. Res. Commun.182, 1369–1375.PubMedCrossRefGoogle Scholar
  5. 5.
    Atassi, M. Z., Manshouri, T. and Sakata, S. (1992) Synthesis, biological activity and autoimmune recognition of the hormone-binding regions of the human thyrotropin receptor. J.Prot. Chem.11, 417–419.CrossRefGoogle Scholar
  6. 6.
    Karlin, A. (1980) Molecular properties of nicotinic acetylcholine receptors. InCell Surface and Neuronal Function(Edited by Colman, C.W., Poste, G. and Nicolson, G.L.), pp. 191–260. Elsevier/North-Holland Biomedical Press, New York.Google Scholar
  7. 7.
    Changeux, J.P., Devillers-Thiery, A. and Chemouilli, P. (1984) Acetylcholine receptor: an allosteric protein.Science225, 1335–1345.PubMedCrossRefGoogle Scholar
  8. 8.
    Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Furutani, Y., Hirose, T., Asai, M., Inayama, S., Miyata, T. and Numa, S. (1982) Primary structure of a-subunit precursor ofTorpedo californicaacetylcholine receptor deduced from cDNA sequence.Nature (London)299, 793–797.CrossRefGoogle Scholar
  9. 9.
    Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Kikyotani, S., Hirose, T., Asai, M., Takashima, H., Inayama, S., Miyata, T. and Numa, S. (1983) Primary structures of 13- and a-subunit precursors ofTorpedo californicaacetylcholine receptor deduced from cDNA sequences.Nature (London)301, 251–255.CrossRefGoogle Scholar
  10. 10.
    Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Kikyotani, S., Miyata, T. and Numa, S. (1983) Structural homology ofTorpedo californicaacetylcholine receptor subunits.Nature (London)302, 528–532.CrossRefGoogle Scholar
  11. 11.
    Claudio, T., Ballivet, M., Patrick, J. and Heinemann, S. (1983) Nucleotide and deduced amino acid sequences ofTorpedo californicaacetylcholine receptor subunit.Proc. Natl. Acad. Sci. USA80, 1111–1115.PubMedCrossRefGoogle Scholar
  12. 12.
    Isenberg, K.E., Mudd, J., Shah, V. and Merlie, J.P. (1986) Nucleotide sequence of the mouse muscle nicotinic acetylcholine receptor a subunit.Nucleic Acids Res.14, 5111–5111; Boulter, J., Evans, K., Goldman, D, Martin, G., Treco, D., Heinemann, D and Patrick, J. (1986) Isolation of a cDNA clone coding for a possible neural nicotinic acetylcholine receptor a-subunit.Nature (London)319, 368–374.PubMedCrossRefGoogle Scholar
  13. 13.
    Buonanno, A., Mudd, J., Shah, V. and Merlie, J.P. (1986) A universal oligonucleotide probe for acetylcholine receptor genes: Selection and sequencing of cDNA clones of the mouse muscle 13 subunit.J. Biol. Chem.261, 16451–16458.PubMedGoogle Scholar
  14. 14.
    Yu, L., LaPolla, J. and Davidson, N. (1986) Mouse nicotinic acetylcholine receptorysubunit: cDNA sequence and gene expression.Nucleic Acids Res.14, 3539–3555.PubMedCrossRefGoogle Scholar
  15. 15.
    LaPolla, R.J., Mayne, K.M. and Davidson, N. (1984) Isolation and characterization of a cDNA clone for the complete protein coding region of the S subunit of the mouse acetylcholine receptor.Proc. Natl. Acad. Sci. USA81, 7970–7974.PubMedCrossRefGoogle Scholar
  16. 16.
    Noda, M., Furutani, Y., Takahashi, H., Toyosato, M., Tanabe, T., Shimizu, S., Kikyotani, S., Kayano, T., Hirose, T., Inayama, S. and Numa, S. (1983) Cloning and sequence analysis of calf cDNA and human genomic DNA encoding alpha-subunit precursor of muscle acetylcholine receptor.Nature (London)305, 818–823.CrossRefGoogle Scholar
  17. 17.
    Sobel, A., Weber, M. and Changeux, J.P. (1977) Large-scale purification of the acetylcholine-receptor protein in its membrane-bound and detergent-extracted forms fromTorpedo marmorataelectric organ.Eur. J. Biochem.80, 215–224.PubMedCrossRefGoogle Scholar
  18. 18.
    McCormick, D.J. and Atassi, M.Z. (1984) Localization and synthesis of the acetylcholine-binding site in the a-chain of theTorpedo californicaacetylcholine receptor.Biochem. J.224, 995–1000.PubMedGoogle Scholar
  19. 19.
    Tzartos, S.J. and Changeux, J.P. (1983) High affinity binding of a bungarotoxin to the purified a subunit and its 27,000-dalton proteolytic peptide fromTorpedo marmorataacetylcholine receptor. Requirements for sodium dodecil sulfate.EMBO. J.2, 381–387.PubMedGoogle Scholar
  20. 20.
    Lee, C.Y. (1979) Recent advances in chemistry and pharmacology of snake toxins. Adv.Cytopharmacol.3, 1–16.Google Scholar
  21. 21.
    Mulac-Jericevic, B. and Atassi, M.Z. (1986) Segment a182–198 ofTorpedo californicaacetylcholine receptor contains a second toxin-binding region and binds anti-receptor antibodies.FEBS Lett.199, 68–74.PubMedCrossRefGoogle Scholar
  22. 22.
    Mulac-Jericevic, B. and Atassi, M.Z. (1987) a-Neurotoxin binding to acetylcholine receptor: localization of the full profile of the cobratoxin-binding regions in the a-chain ofTorpedo californicaacetylcholine receptor by a comprehensive synthetic strategy.J. Prot. Chem.6, 365–373.CrossRefGoogle Scholar
  23. 23.
    Mulac-Jericevic, B. and Atassi, M.Z. (1987) Profile of the a-bungarotoxin binding regions on the extracellular part of the a-chain ofTorpedo californicaacetylcholine receptor.Biochem. J.248, 847–852.PubMedGoogle Scholar
  24. 24.
    Mulac-Jericevic, B., Manshouri, T., Yokoi, T. and Atassi, M.Z. (1988) The regions of a-neurotoxin binding on the extracellular part of the a-subunit of human acetylcholine receptor.J. Prot. Chem.7, 173–177.CrossRefGoogle Scholar
  25. 25.
    Ruan, K.-H., Stiles, B.G. and Atassi, M.Z. (1991) The short-neurotoxin binding regions on the a-chain of human andTorpedo californicaacetylcholine receptors.Biochem. J.274, 849–854.PubMedGoogle Scholar
  26. 26.
    McDaniel, C.S., Manshouri, T. and Atassi, M.Z. (1987) A novel peptide mimicking the interaction of a-neurotoxins with acetylcholine receptor.J. Prot. Chem.6, 455–461.CrossRefGoogle Scholar
  27. 27.
    Atassi, M.Z., McDaniel, C.S. and Manshouri, T. (1988) Mapping by synthetic peptides of the binding sites for acetylcholine receptor on a-bungarotoxin. J.Prot. Chem.7, 655–666.CrossRefGoogle Scholar
  28. 28.
    Ruan, K.-H., Spurlino, J., Quiocho, F.A. and Atassi, M.Z. (1990) Acetylcholine receptor a bungarotoxin interactions: determination of the region-to-region contacts by peptide-peptide interactions and molecular modeling of the receptor cavity.Proc. Natl. Acad. Sci. USA87, 6156–6160.PubMedCrossRefGoogle Scholar
  29. 29.
    Guy, H.R. (1983) A structural model of the acetylcholine receptor channel based on partition energy and helix packing calculations.Biophys. J.45, 249–261.CrossRefGoogle Scholar
  30. 30.
    Finer-Moore, J. and Stroud, R.M. (1984) Amphipathic analysis and possible formation of the ion channel in an acetylcholine receptor.Proc. Natl. Acad. Sci. USA81, 155–159.PubMedCrossRefGoogle Scholar
  31. 31.
    Atassi, M.Z., McDaniel, C.S. and Manshouri, T. (1988) Mapping by synthetic peptides of the binding sites for acetylcholine receptor on a-bungarotoxin.J. Prot. Chem.7, 655–666.CrossRefGoogle Scholar
  32. 32.
    Atassi, M.Z., Mulac-Jericevic, B. and Ashizawa, T. (1994) Mapping of the polypeptide chain organization of the main extracellular domain of the a-subunit in membrane-bound acetylcholine receptor by anti-peptide antibodies spanning the entire domain.Adv. Expt. Med. Biol.347, 221–228.CrossRefGoogle Scholar
  33. 33.
    Atassi, M.Z. and Mulac-Jericevic, B. (1994). Mapping of the extracellular topography of the a-chain in free and in membrane-bound acetylcholine receptor by antibodies against overlapping peptides spanning the entire extracellular parts of the chain.J. Prot. Chem.13, 37–47.CrossRefGoogle Scholar
  34. 34.
    Jinnai, K., Ashizawa, T. and Atassi, M.Z. (1994) Analysis of exposed regions on the main extracellular domain of mouse acetylcholine receptor a subunit inlivemuscle cells by binding profiles of antipeptide antibodies:J. Prot. Chem., 13, 715–722.CrossRefGoogle Scholar
  35. 35.
    Appel, S.H., Almon, R.R. and Levy, N. (1975) Acetylcholine receptor antibodies in myasthenia gravis.N. Engl. J. Med.293, 760–761.PubMedCrossRefGoogle Scholar
  36. 36.
    Berman, P.W. and Patrick J. (1980) Linkage between the frequency of muscle weakness and loci that regulate immune responsiveness in murine experimental gravis.J. Exp. Med.152, 507–520.PubMedCrossRefGoogle Scholar
  37. 37.
    Engel, A.G. (1984) Myasthenia gravis and myasthenic syndromes.Ann. Neurol.16, 519–533.PubMedCrossRefGoogle Scholar
  38. 38.
    Lindstrom, J.M., Seybold, M.E., Lennon, V.A., Whittingham, S. and Duane, D.D. (1976) Antibody to acetylcholine receptor in myasthenia gravis. Prevalence, clinical correlates, and diagnostic value.Neurology26, 1054–1059.PubMedCrossRefGoogle Scholar
  39. 39.
    Falpius, B.W., Miskin, R. and Riche, E. (1980) Antibodies from myasthenic patients that compete with cholinergic agents for binding to nicotinic receptors.Proc. Natl. Acad. Sci. USA77, 4326–4330.CrossRefGoogle Scholar
  40. 40.
    Ashizawa, T., Ruan, K.H., Jinnai, K. and Atassi, M.Z. (1992) Profile of the regions on the a-chain of human acetylcholine receptor recognized by autoantibodies in myasthenia gravis.Mol. Immunol.29, 1507–1514.PubMedCrossRefGoogle Scholar
  41. 41.
    Oshima, M., Ashizawa, T., Pollack, M.S. and Atassi, M.Z. (1990) Autoimmune T cell recognition of human acetylcholine receptor: the sites of T cell recognition in myasthenia gravis on the extracellular part of the a subunit.Eur. J. Immunol.20, 2563–2569.PubMedCrossRefGoogle Scholar
  42. 42.
    Vincent, A. and Newson-Davis, J. (1985) Acetylcholine receptor antibody as a diagnostic test for myasthenia gravis: results in 153 validated cases and 2967 diagnostic assays.J. Neurol. Neurosurg. Psych.48, 1246–1252.CrossRefGoogle Scholar
  43. 43.
    Pachner, AR., Kantor, F.S., Mulac-Jericevic, B. and Atassi, M.Z. (1989) An immunodominant site of acetylcholine receptor in experimental myasthenia gravis mapped with T lymphocyte clones and synthetic peptides.Immunol. Lett.20, 199–204.PubMedCrossRefGoogle Scholar
  44. 44.
    Safwenberg, J., Hammerstrom, L., Lindbluom, J.B., Matell, G., Moller, E., Osterman, P.O. and Smith, S.I.E. (1978) HLA-A, -B, and -D antigens in male patients with myasthenia gravis.Tissue Antigens12, 136–142.PubMedCrossRefGoogle Scholar
  45. 45.
    Bell, J., Rassenti, L., Smoot, S., Smith, K., Newby, C., Hohlfeld, R., Toyka, K., McDevitt, H. and Steinman, L. (1986) HLA-DQ beta-chain polymorphism linked to myastenia gravis.Lancet i1058–1060.Google Scholar
  46. 46.
    Christadoss, P. (1989) Immunogenetics of experimental autoimmune myasthenia gravis.Crit. Rev. Immunol.9, 247–278.PubMedGoogle Scholar
  47. 47.
    Christadoss, P., David, C.S., Shenoy, M. and Keve, S. (1990) Eak transgene in B10 mice suppresses the development of myasthenia gravis.Immunogenetics31, 241–244.PubMedCrossRefGoogle Scholar
  48. 48.
    Christadoss, P., David, C.S. and Keve, S. (1992) I-Aak transgene pairs with I-A13b gene and protects C57BL 10 mice from developing autoimmune myasthenia gravis.Clin. Immunol. Immunpathol.62, 235–239.CrossRefGoogle Scholar
  49. 49.
    Hohlfeld, R., Toyka, K.V., Heininger, K., Grosse-Wilde, H. and Kalies, I. (1984) Autoimmune human T lymphocytes specific for acetylcholine receptor.Nature (London)310, 244–246.CrossRefGoogle Scholar
  50. 50.
    Yokoi, T., Mulac-Jericevic, B., Kurasaki, J. and Atassi, M.Z. (1987) T lymphocyte recognition of acetylcholine receptor: localization of the full T cell recognition profile on the extracellular part of the a chain ofTorpedo californicaacetylcholine receptor.Eur. J. Immunol.17, 1697–1702.PubMedCrossRefGoogle Scholar
  51. 51.
    Oshima, M., Pachner, A.R. and Atassi, M.Z. (1994) Profile of the regions of acetylcholine receptor a chain recognized by T lymphocytes and by antibodies in EAMG-susceptible and non-susceptible mouse strains after different periods of immunization with the receptor.Mol. Immunol.31, 833–843.PubMedCrossRefGoogle Scholar
  52. 52.
    Widera, G., and Flavell, R.A. (1984) The nucleotide sequence of the murine I-EBb immune response gene: evidence for gene conversion events in class II genes of the major histocompatibility complex.EMBO J.3, 1221–1225.PubMedGoogle Scholar
  53. 53.
    Denaro, M., Hammerling, U., Rask, L. and Peterson, P.A. (1984) The El3b gene may have acted as the donor gene in a gene conversion event generating the ABbm12mutant.EMBO J.3, 2029–2032.PubMedGoogle Scholar
  54. 54.
    McIntyre, K.R. and Seidman, J.G. (1984) Nucleotide sequence of mutant I-ABbm12gene is evidence for genetic exchange between mouse immune response genes.Nature(London) 308, 551–553.CrossRefGoogle Scholar
  55. 55.
    Shenoy, M.. Oshima, M., Atassi, M.Z. and Christadoss, P. (1993) Suppression of experimental autoimmune myasthenia gravis by epitope-specific neonatal tolerance to synthetic region a146–162 of acetylcholine receptor.Clin. Immunol. Immunopathol.66, 230–238.PubMedCrossRefGoogle Scholar
  56. 56.
    Rosenthal, A.S. (1978) Determinant selection and macrophage function in genetic control of the immune response.Immunol. Rev.40, 136–152.PubMedCrossRefGoogle Scholar
  57. 57.
    Benacerraf, B. (1978) A hypothesis to relate the specificity of T lymphocytes and the activity of I region-specific Ir genes in macrophages and B lymphocytes.J. Immunol.120, 1809–1812.PubMedGoogle Scholar
  58. 58.
    Ronchese, F., Brown, M.A. and Germain, R.N. (1987) Structure-function analysis of the Alibm12.J. Immunol.139, 629–638.PubMedGoogle Scholar
  59. 59.
    Brown, J. H., Jardetsky, T. S., Gorga, J. C., Stern, L. J., Urban, R. G., Strominger, J. L. and Wiley, D. C. (1993) Three-dimensional structure of the human class II histocompatability antigen HLA-DR1.Nature (London)364, 33–39.CrossRefGoogle Scholar
  60. 60.
    .Oshima, M. and Atassi, M. Z. (1995) Effect of amino acid substitutions within the region 62–76 of I-A13b on binding with and antigen presentation of Torpedo acetylcholine receptor a chain peptide 146–162. J. Immunol., in press.Google Scholar
  61. 61.
    Young, C.R. and Atassi, M.Z. (1983) T lymphocyte recognition of sperm whale myoglobin specificity of T cell recognition following neonatal tolerance with either myoglobin or synthetic peptides of an antigenic site. J.Immunogenet. 10161–169.PubMedCrossRefGoogle Scholar
  62. 62.
    Clayton, J. Gammon, G.M., Ando, D.G., Kono, D.H., Hood, L. and Sercarz, E.E. (1989) Peptide-specific prevention of experimental allergic encephalomyelitis: Neonatal tolerance induced to the dominant T-cell determinant of myelin basic protein.J. Exp. Med.169, 1681–1691.PubMedCrossRefGoogle Scholar
  63. 63.
    Mulac-Jericevic, B., Kurisaki, J. and Atassi, M.Z. (1987) Profile of the continuous antigenic regions on the extracellular part of the a chain of an acetylcholine receptor.Proc. Natl. Acad. Sci. USA84, 3633–3637.PubMedCrossRefGoogle Scholar
  64. 64.
    Lennon, V.A., McCormick, D.J., Lambert, E.H., Griesmann, G.E. and Atassi, M.Z. (1985) Region of peptide 125–147 of acetylcholine receptor a-subunit is exposed at neuromuscular junction and induces experimental autoimmune myasthenia gravis, T-cell immunity and modulating autoantibodies.Proc. Natl. Acad. Sci. USA82, 8805–8809.PubMedCrossRefGoogle Scholar
  65. 65.
    Atassi, M.Z., Ruan, K.H., Jinnai, K., Oshima, M. and Ashizawa, T. (1992) Epitope-specific suppression of antibody response in experimental autoimmune myasthenia gravis by an monomethoxypolyethylene glycol conjugate of a myasthenogenic synthetic peptide.Proc. Natl. Acad. Sci. USA89, 5852–5856.PubMedCrossRefGoogle Scholar
  66. 66.
    Abuchowski, A., van Es, T., Palczuk, N.C. & Davis, F.F. (1977) Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol.J. Biol. Chem.252, 3578–3581.PubMedGoogle Scholar
  67. 67.
    Lee, W.Y. and Sehon, A.H. (1977) Abrogation of reaginic antibodies with modified allergens.Nature (London)267, 618–619.CrossRefGoogle Scholar
  68. 68.
    Davis, F.F., Abuchowski, A., van Es, T., Palczuk, N.C., Savoca, K., Chen, R.H.-L. and Pyatuk, P. (1980) in: Biochemical Polymers: Polymeric Materials and Pharmaceuticals for Biomedical Use, E.P. Goldberg, and A. Nakajima, eds., pp. 441–452, Academic, New York.Google Scholar
  69. 69.
    Savoca, K.V., Davis, F.F. and Palczuk, N.C. (1984) Induction of tolerance in mice by uricase and monomethoxypolyethylene glycol-modified uricase.Int. Arch. Allergy Appl. Immunol.75, 58–66.PubMedCrossRefGoogle Scholar
  70. 70.
    Sehon, A.H. and Lang, G.M. (1986) The use of nonionic, water soluble polymers for the synthesis of tolerogenic conjugates of antigens, in: Mediators of Immune Regulation and Immunotherapy, S.K. Singal and T.L. Delovitch, eds., pp. 190–203, Elsevier, New York.Google Scholar
  71. 71.
    Atassi, M.Z. and Manshouri, T. (1991) Synthesis of tolerogenic monomethoxypolyethylene glycol and polyvinyl alcohol conjugates to peptides.J. Prot. Chem.10, 623–687.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • M. Zouhair Atassi
    • 1
  • Minako Oshima
    • 1
  1. 1.Department of BiochemistryBaylor College of MedicineHoustonUSA

Personalised recommendations