Skip to main content

Murine β1,4-Galactosyltransferase

Analysis of a Gene That Serves Both A Housekeeping and a Cell Specific Function

  • Chapter
Glycoimmunology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 376))

Abstract

Glycoconjugates (glycolipids and glycoproteins) are a major class of biomolecules found on the cell surface of essentially all cells and tissues. A remarkable and somewhat bewildering number of different oligosaccharide structures (glycans) have been isolated and characterized from glycoconjugates. Because of this remarkable structural diversity, oligosaccharide structures have long been considered ideal candidates for information-containing molecules which can mediate intercellular communication and recognition or alternatively, communication between a cell and its environment. Indeed, ordered, sequential changes in the expression of specific glycan structures at the cell surface may provide an important mechanism for controlling cell-cell behavior and fate during development. During early murine embryogenesis, temporal changes in cell surface glycosylation patterns (stage specific antigens) have been documented using monoclonal antibodies that are specific for defined glycan structures (reviewed in 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fenderson, B.A., Eddy, E.M., and Hakomori, S., 1990, Glycoconjugate expression during embryogenesis and its biological significance, BioEssays 12:173–179.

    Article  PubMed  CAS  Google Scholar 

  2. Bleil, J.D., and Wassarman, P.M., 1988, Galactose at the nonreducing terminus of O-linked oligosaccharides of mouse egg zona pellucida glycoprotein ZP3 is essential for the glycoprotein’s sperm receptor activity, Proc. Natl. Acad. Sci. USA 85:6778–6782.

    Article  PubMed  CAS  Google Scholar 

  3. Cheng, A., Le, T., Palacios, M., Bookbinder, L.H., Wassarman, P.M., Suzuki, F., and Bleil, J.D., 1994, Sperm-egg recognition in the mouse: characterization of sp56, a sperm protein having specific affinity for ZP3, J. Cell Biol. 125:867–878.

    Article  PubMed  CAS  Google Scholar 

  4. Varki, A., 1993, Biological roles of disaccharides: all of the theories are correct, Glycobiology 3:97–130.

    Article  PubMed  CAS  Google Scholar 

  5. Singhal, A., and Hakomori, S., 1990, Molecular changes in carbohydrate antigens associated with cancer, BioEssays 12:223–230.

    Article  PubMed  CAS  Google Scholar 

  6. Axford, J.S., Lydyard, P.M., Isenberg, D.A., Mackenzie, L., Hay, F.C., and Roitt, I.V., 1987, Reduced B-cell galactosyltransferase activity in rheumatoid arthritis, Lancet (Dec. 26): 1486–1488.

    Google Scholar 

  7. Parekh, R.B., Dwek, R.A., Sutton, B.J., Fernandes, D.L., Leung, A., Stanworth, D., and Rademacher, T.W., 1985, Association of rheumatoid arthritis and primary osteoarthritis with changes in the glycosylation pattern of total serum IgG, Nature 316:452–457.

    Article  PubMed  CAS  Google Scholar 

  8. Schachter, H., 1991, Enzymes associated with glycosylation, Curr. Opin. Struc. Biol. 1:755–765.

    Article  CAS  Google Scholar 

  9. Beyer, T.A., and Hill, R.L., 1982, Glycosylation pathway in the biosynthesis of nonreducing terminal sequences in oligosaccharides of glycoproteins, in Horowitz, M. (ed.), The Glycoconjugates Vol. III, Academic Press, New York, pp. 25–45.

    Google Scholar 

  10. Hollis, G.F., Douglas, J.G., Shaper, N.L., and Shaper, J.H., 1989, Genomic structure of murine β1,4-galactosyltransferase, Biochem. Biophys. Res. Comm. 162:1069–1075.

    Article  PubMed  CAS  Google Scholar 

  11. Joziasse, D.H., Shaper, N.L., Kim, D., Van den Eijnden, D.H., and Shaper, J.H., 1992, Murine α1,3-galactosyltransferase: a single gene locus specifies four isoforms of the enzyme by alternative splicing, J. Biol. Chem. 267:5534–5541.

    PubMed  CAS  Google Scholar 

  12. Joziasse, D.H., 1993, Mammalian glycosyltransferases: genomic organization and protein structure, Curr. Opin. Struct. Biol. 3:271–277.

    Google Scholar 

  13. Brodbeck, V., Denton, W.L., Tanahashi, N., and Ebner, K.E., 1967, The isolation and identification of the β protein of lactose synthetase as α-lactalbumin, J. Biol. Chem. 242:1391–1397.

    PubMed  CAS  Google Scholar 

  14. Turkington, R.W., Brew, K., Vanaman, T.C., and Hill, R.L., 1968, The hormonal control of lactose synthetase in the developing mouse mammary gland, J. Biol. Chem. 243:3382–3387.

    PubMed  CAS  Google Scholar 

  15. Brew, K., 1970, Lactose synthetase: evolutionary origins, structure and control, Essays in Biochem. 6:93–118.

    CAS  Google Scholar 

  16. Nitta, K., and Sugai, S., 1989, The evolution of lysozyme and α-lactalbumin, Eur. J. Biochem. 182:111–118.

    Article  PubMed  CAS  Google Scholar 

  17. Shur, B.D., 1993, Glycosyltransferases as cell adhesion molecules, Curr. Opin. Cell Biol. 5:854–863.

    Article  PubMed  CAS  Google Scholar 

  18. Taatjes, D.J., Roth, J., Weinstein, J., and Paulson, J.C., 1988, Post-golgi apparatus localization and regional expression of rat intestinal sialyltransferase detected by immunoelectron microscopy with polypeptide epitope-purified antibody, J. Biol. Chem. 263:6302–6309.

    PubMed  CAS  Google Scholar 

  19. Taatjes, D.J., Roth, J., Shaper, N.L., and Shaper, J.H., 1992, Immunocytochemical localization of β1,4-galactosyltransferase in epithelial cells from bovine tissues using monoclonal antibodies, Glycobiology 2:579–589.

    Article  PubMed  CAS  Google Scholar 

  20. Roseman, S., 1970, The synthesis of complex carbohydrates by multiglycosyltransferase systems and their potential function in intracellular adhesion, Chem. Phys. Lipids 5:270–297.

    Article  PubMed  CAS  Google Scholar 

  21. Powell, J.T., and Brew, K., 1976, Metal ion inactivation of galactosyltransferase, J. Biol. Chem. 251:3645–3652.

    PubMed  CAS  Google Scholar 

  22. Shaper, N.L., Shaper, J.H., Peyser, M., and Kozak, C.A., 1990, Localization of the gene for β1,4-galactosyltransferase to a position in the centromeric region of mouse chromosome 4, Cytogenet Cell Genet. 54:172–174.

    Article  PubMed  CAS  Google Scholar 

  23. Hollis, G.F., Douglas, J.G., Shaper, N.L., and Shaper, J.H., 1989, Genomic structure of murine β1,4-galactosyltransferase, Biochem. Biophys. Res. Comm. 162:1069–1075.

    Article  PubMed  CAS  Google Scholar 

  24. Shaper, N.L., Hollis, G.F., Douglas, J.G., Kirsch, I.R., and Shaper, J.H., 1988, Characterization of the full-length cDNA for murine β1,4-galactosyltransferase: novel features at the 5’ end predict two translational start sites at two in-frame AUGs, J. Biol. Chem. 263:10420–10428.

    PubMed  CAS  Google Scholar 

  25. Russo, R.N., Shaper, N.L., and Shaper, J.H., 1990, Bovine β1→4-galactosyltransferase: two sets of mRNA transcripts encode two forms of the protein with different amino terminal domains-in vitro translation experiments demonstrate that both the short and the long forms of the enzyme are type II membrane-bound glycoproteins, J. Biol. Chem. 265:3324–3331.

    PubMed  CAS  Google Scholar 

  26. Shaper, N.L., Wright, W.W., and Shaper, J.H., 1990, Murine β1,4-galactosyltransferase: both the amounts and structure of the mRNA are regulated during spermatogenesis, Proc. Natl. Acad. Sci. USA 87:791–795.

    Article  PubMed  CAS  Google Scholar 

  27. Harduin-Lepers, A., Shaper, N.L., Mahoney, J.A., and Shaper, J.H., 1992, Murine β1,4-galactosyltransferase: round spermatid transcripts are characterized by an extended 5’-untranslated region, Glycobiology 2:361–368.

    Article  PubMed  CAS  Google Scholar 

  28. Shaper, N.L., Harduin-Lepers, A., and Shaper, J.H., 1994, Male germ cell expression of murine β4-galactosyltransferase-A 796-base pair genomic region, containing two cAMP-responsive element (CRE)-like elements, mediates male germ cell-specific expression in transgenic mice, J. Biol. Chem. 269:25165–25171.

    PubMed  CAS  Google Scholar 

  29. Harduin-Lepers, A., Shaper, J.H., and Shaper, N.L., 1993, Characterization of two cis-regulatory regions in the murine β1,4-galactosyltransferase gene: evidence for a negative regulatory element that controls initiation at the proximal site, J. Biol. Chem. 268:14348–14359.

    PubMed  CAS  Google Scholar 

  30. Saffer, J.D., Jackson, S.P., and Annarella, M.B., 1991, Developmental expression of Sp1 in the mouse, Mol. Cell. Biol. 11:2189–2199.

    PubMed  CAS  Google Scholar 

  31. Vilotte, J-L., and Soulier, S., 1992, Isolation and characterization of the mouse α-lactalbumin-encoding gene: interspecies comparison, tissue- and stage-specific expression, Gene 119:287–292.

    Article  PubMed  CAS  Google Scholar 

  32. Kozak, M., 1992, Translational regulation, Ann. Rev. Cell Biol. 8:197–225.

    Article  PubMed  CAS  Google Scholar 

  33. Bellve, A.R., Cavicchia, J.C., Millette, C.F., O’Brien, D.A., Bhatnagar, Y.M., and Dym, M., 1977, Spermatogenic cells of the prepuberal mouse-Isolation and morphological characterization, J. Cell Biol. 74:68–85.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel H. Shaper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shaper, J.H., Harduin-Lepers, A., Rajput, B., Shaper, N.L. (1995). Murine β1,4-Galactosyltransferase. In: Alavi, A., Axford, J.S. (eds) Glycoimmunology. Advances in Experimental Medicine and Biology, vol 376. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1885-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1885-3_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5768-1

  • Online ISBN: 978-1-4615-1885-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics