Skip to main content

Molecular Modelling of Glycoproteins by Homology with Non-Glycosylated Protein Domains, Computer Simulated Glycosylation and Molecular Dynamics

  • Chapter
Book cover Glycoimmunology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 376))

Abstract

Objectives: This study aims to visualise glycoproteins by computer graphics molecular modelling in order to research the dynamics of the oligosaccharide chains, determine their affects on protein conformation, antigenicity and function and to characterise oligosaccharide recognition determinants. With respect to the last, the modelling included the sialylpolylactosamine of thymocyte Thy-1 and the sialyl Lex/Lea determinant present on brain Thy-l.

Methods: The following techniques were used: 1) database searching for homologies with non-glycosylated protein domains; 2) protein modelling on the basis of homology and secondary structure prediction techniques; 3) oligosaccharide construction using a simulated annealing approach utilising the AMBER forcefield with appropriate parameters in the Biosym software environment; 4) creation of glycoprotein conjugates for further investigation by energy minimisation and molecular dynamics.

Results: This approach was successful in providing models of Thy-l and the carboxy terminus 27.5 kD of HIV-1 gp 120, by homology with immunoglobulin light chain folds and in one case (Thy-1) adding the oligosaccharide chains, phosphatidylinositol glycan anchor and lipid membrane and, in the other, adding additional highly glycosylated domains, and domains which folded by molecular dynamics. Significant affects on protein conformation were shown in the presence or absence of the lipid anchor and simulated membrane, but not by the N-linked oligosaccharide chains.

Conclusions: The highly glycosylated molecules Thy-l and gp120, which are not expected to crystallise in their native state, were modelled by computer graphics simulated annealing or molecular dynamics from which interactions could be predicted which agree with experimental data on antibody binding and in vitro activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Homans S W. A molecular mechanical forcefield for the conformational analysis of oligosaccharides Biochem 1990; 29; 9110–18

    Article  CAS  Google Scholar 

  2. Ha S.N, Giammona A, Field M, Brady J.W. A revised potential-energy surface for molecular mechanics studies of carbohydrates. Carbohydr Res 1988; 180:207–10

    Article  PubMed  CAS  Google Scholar 

  3. Renouf D V, Hounsell E F. Conformational studies of the backbone (poly-N-acetyllactosamine) and the core region sequences of O-linked carbohydrate chains. Int J Biol Macromol 1993; 15: 37–42

    Article  PubMed  CAS  Google Scholar 

  4. Williams A F, Gagnon J. Neuronal cell Thy-1 glycoprotein: homology with immunoglobulin. Science 1982; 216: 696–703

    Article  PubMed  CAS  Google Scholar 

  5. Williams A F, Parekh R B, Wing D, Willis A C, Barclay AN, Dalchau R, Fabre J W, Dwek R A, Rademacher T W. Comparative analysis of the N-glycans of rat, mouse and human Thy-1. Site-specific oligosaccharide patterns of neural Thy-1, a member of the immunoglobulin superfamily. Glycobiology 1993;3:339–48

    Article  PubMed  CAS  Google Scholar 

  6. Rademacher T W, Edge C J, Dwek R A. Dropping anchor with the lipophosphoglycans. Current Biol. 1991;1:41–42

    Article  CAS  Google Scholar 

  7. Parekh R B, Tse A G, Dwek R A, Williams A F, Rademacher T W. Tissue specific N-glycosylation, site specific oligosaccharide patterns and lentil lectin recognition of rat Thy-1. EMBO J 1987;6:1233–44

    PubMed  CAS  Google Scholar 

  8. Homans S W, Ferguson M ,. Dwek R A, Rademacher T W, Anand R, Williams A F. Complete structure of the glycosyl phosphatidylinositol membrane anchor of rat brain Thy-1 glycoprotein. Nature 1988;333:269–272

    Article  PubMed  CAS  Google Scholar 

  9. Imberty A, Gerber S, Tran V, Perez S. Data bank of three-dimensional structures of disaccharides. A tool to build 3-D structures of oligosaccharides. Glycoconjugate J 1990; 7; 27–54.

    Article  CAS  Google Scholar 

  10. Imberty A, Delage M-M, Bourne Y, Cambillau C, Perez S. Data bank of three-dimensional structures of disaccharides: Part II, N-acetyllactosaminic type N-glycans. Comparison with the crystal structure of a biantennary octasaccharide. Glycoconjugate J 1991; 8; 456–83.

    Article  CAS  Google Scholar 

  11. Bourne Y, Mazurier J, Legrand D, Rouge P, Montreuil J, Spik G, Cambillau C. Structures of a legume lectin complexed with the human lactotransferrin N2 fragment, and with an isolated biantennary glycopeptide: role of the fucose moiety. Structure 1994; 2; 209–299.

    Article  PubMed  CAS  Google Scholar 

  12. Hounsell E F, Renouf D. V. Liney D, Dalgleish A G. Habeshaw J A. A proposed molecular model for the carboxy terminus of HIV-1 gp1420 showing structural features consistent with the presence of a T-cell alloepitope. Molec Aspects Medicine 1991;21:283–96

    Article  Google Scholar 

  13. Leonard C K, Spellman M W, Riddle L, Harris R J, Thomas J N, Gregory T J. The site specific glycosylation patterns of gp120 of the human immunodeficiency virus HIV-1. J Biol Chem 1990;265:10373–82

    PubMed  CAS  Google Scholar 

  14. Barboni E, Rivero B P, George A J T, Martin S. R, Renouf D V, Hounsell E F, Barber P C, and Morris R J. The glycophosphatidylinositol anchor affects the conformation of the protein Thy-l protein. J. Cell Science In Press

    Google Scholar 

  15. Clerici M, Shearer G, Hounsell E F , Jameson B, Habeshaw J, Dalgleish A G. Alloactivated cytotoxic T cells recognise the carboxy-terminal domain of human immunodeficiency virus-1 gp120 envelope glycoprotein Eur J Biochem 1993;23:2022–25

    CAS  Google Scholar 

  16. Rao B N N, Anderson M B , Musser J H, Gilbert J H , Scheafer M E, Foxall C, Brandley B K. Sialyl Lewis X mimics derived from a pharmacophore search are selectin inhibitors with anti-inflammatory activity. J Biol Chem 1994;269:19633–66

    Google Scholar 

  17. Avanov A.Y. Conformational aspects of glycosylation. Molekulyarnaya Biologiya 1991; 25:293–308.

    CAS  Google Scholar 

  18. Imperiali B, Shannon K L. Differences between Asn-Xaa-Thr-containing Peptides: A comparison of solution conformation and substrate behaviour with oligosaccharyltransferase; Biochem1991; 30:4374–80.

    Article  CAS  Google Scholar 

  19. Geetha-Habib M, Park H R, Lennarz W J. In vivo N-glycosylation of Asn-X-Thr tripeptides. J Biol Chem 1990; 26:13655–60.

    Google Scholar 

  20. Powell L M, Pain R H. Effects of glycosylation on the folding and stability of human, recombinant and cleaved α1-antitrypsin. J Mol Biol 1992; 224: 241–52.

    Article  PubMed  CAS  Google Scholar 

  21. Urge L, Gorbics L, Otvos L. Chemical glycosylation of peptide at natural and artificial glycosylation sites stabilizes or rearranges the dominant reverse turn structure. Biochem Biophys Res Commun 1992; 184: 1125–32

    Article  PubMed  CAS  Google Scholar 

  22. Andreotti A H, Kahne D. Effects of glycosylation on peptide backbone conformation. J Am Chem Soc 1993; 115:3352–53.

    Article  CAS  Google Scholar 

  23. Perczel A, Kollat E, Hollosi M, Fasman G D. Synthesis and conformational analysis of N-glycopeptides. II. CD, molecular dynamics, and NMR spectroscopic studies on linear N-glycopeptides. Biopolymers 1993; 33:665–85.

    Article  PubMed  CAS  Google Scholar 

  24. Hammond C, Braakman I, Helenius A. Role of N-linked oligosaccharide recognition, glucose trimming and calnexin in glycoprotein folding and quality control. Proc Nat Acad Sci 1994;91:913–17

    Article  PubMed  CAS  Google Scholar 

  25. Homans S W, Edge J C, Ferguson M A J, Dwek R A, Rademacher T W. Solution structure of the glycosylphosphatidylinositol membrane anchor glycan of Trypanosoma brucei variant surface glycoprotein. Biochem 1989; 28: 2881–87.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Renouf, D.V., Hounsell, E.F. (1995). Molecular Modelling of Glycoproteins by Homology with Non-Glycosylated Protein Domains, Computer Simulated Glycosylation and Molecular Dynamics. In: Alavi, A., Axford, J.S. (eds) Glycoimmunology. Advances in Experimental Medicine and Biology, vol 376. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1885-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1885-3_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5768-1

  • Online ISBN: 978-1-4615-1885-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics