Skip to main content

Agalactosylation by Reactive Oxygen Species and Fc Related Changes to Function

  • Chapter

Part of the Advances in Experimental Medicine and Biology book series (AEMB,volume 376)

Abstract

Most cell surface and serum derived proteins have oligosaccharides covalently linked to Asn or Thr in the primary sequence. There is considerable microheterogeneity in these carbohydrate components and each glycoform may be involved in unique cellular functions.

Keywords

  • Reactive Oxygen Species
  • Carbohydrate Moiety
  • Phorbol Myristate Acetate
  • Neutral Sugar
  • Reactive Oxygen Species Effect

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4615-1885-3_16
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   39.99
Price excludes VAT (USA)
  • ISBN: 978-1-4615-1885-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   54.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burton DR (1985) Review. Immunoglobulin G: functional sites. Molec. Immunol; 22 (3): 161–206.

    CrossRef  CAS  Google Scholar 

  2. Heyman B, Nose M, Weigle WO (1985) Carbohydrate chains on IgG 2b; a requirement for efficient feedback immunosuppression. J. Immunol; 134 (6): 4018–4023.

    PubMed  CAS  Google Scholar 

  3. Day JF, Thornburg RW, Thorpe SR, Baynes TW (1980) Carbohydrate mediated clearance of antibody-antigen complexes from the circulation. The role of high mannose oligosaccharides in the hepatic uptake of IgM-antigen complexes. J. Biol Chem; 255: 2360–2365.

    PubMed  CAS  Google Scholar 

  4. Duc Dudon M, Quash GA (1981) The antigenicity of asialyated IgG; its relationship to rheumatoid factor. Immunol; 42: 401–408.

    Google Scholar 

  5. Galloway GA, Leung A, Hunneyball IM, Stanworth DR (1983) The successful use of asialyated IgG as an immunogen and arthritogen in the rabbit. Immunol; 49: 511–518.

    CAS  Google Scholar 

  6. Mullinax F, Hymes AJ, Mullinax GL (1976) Molecular site and enzymic origin of IgG galactose deficiency in RA and SLE. Arth. Rheum; 19: 813.

    Google Scholar 

  7. Parekh RB, Dwek RA, Sutton BJ et al (1985) Association of rheumatoid arthritis and primary osteoarthritis with changes in the glycosylation pattern of total serum IgG. Nature; 316 (6027): 452–457.

    CrossRef  PubMed  CAS  Google Scholar 

  8. Axford JS, MacKenzie L, Lydyard PM (1987) Reduced B cell galactosyl transferase activity in rheumatoid arthritis. Lancet; ii: 1486–1488.

    CrossRef  Google Scholar 

  9. Tomana M, Schrohenloher RE, Koopman WJ et al (1988) Abnormal glycosylation of serum IgG from patients with chronic inflammatory diseases. Arth Rheum; 31 (3): 333–338.

    CrossRef  CAS  Google Scholar 

  10. Griffiths HR, Dowling EJ, Sahinoglu T, Blake DR, Parnham M and Lunec J (1992) The selective protection afforded by ebselen against lipid peroxidation in an ROS-dependent model of inflammation. Agents & Actions 36: 107–111.

    CrossRef  CAS  Google Scholar 

  11. Baggiolini M (1982) Proteinases and acid hydrolases of polymorphonuclear leukocytes and the mechanisms of their release. In: Adv in Inflamm Res; Vol 3: 313–327.

    CAS  Google Scholar 

  12. Lunec J, Griffiths HR, Blake DR (1987a) Oxygen radicals in inflammation. ISI Atlas of Science: Pharm 1:45–48.

    CAS  Google Scholar 

  13. Lunec J, Blake DR, McCleary SJ, Brailsford S, Bacon PA (1985) Self perpetuating mechanisms of immunoglobulin G aggregation in rheumatoid inflammation. J Clin Invest; 76 (6): 2084–2090.

    CrossRef  PubMed  CAS  Google Scholar 

  14. McCord JM (1974) Free radicals and inflammation: protection of synovial fluid by superoxide dismutase. Science; 189:529–531.

    CrossRef  Google Scholar 

  15. Scholes G, Ward JF, Weiss J, (1960) Mechanism of radiation induced degradation of nucleic acids. J Mol Biol; 2: 379–391.

    CrossRef  PubMed  CAS  Google Scholar 

  16. Sharon N (1974) Glycoproteins. Sci Am; 230 (5): 78–86.

    CrossRef  PubMed  CAS  Google Scholar 

  17. Gutteridge JMC (1981) Thiobarbituric acid reactivity following iron dependent free radical damage to amino acids and carbohydrates. FEBS Lett; 128 (2); 343–346.

    CrossRef  PubMed  CAS  Google Scholar 

  18. Wolff SP, Crabbe MJC, Thornalley PJ (1984) The autooxidation of (-hydroxy ketones. Experentia; 40: 244–246.

    CrossRef  CAS  Google Scholar 

  19. Von Sonntag C (1980) Free radical reactions of carbohydrates as studied by radiation techniques. Adv Carb Chem and Biochem; 37: 1–77.

    Google Scholar 

  20. Anbar M, Neta P (1967) A compilation of specific biomolecular rate constants for the reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals with inorganic compounds in aqueous solution. Int J Appl Radiat and Isotopes; 18: 493–523.

    CrossRef  CAS  Google Scholar 

  21. Hymes AJ, Mullinax GL, Mullinax F (1979) Immunoglobulin carbohydrate requirement of an IgG-IgG complex. J Biol Chem; 254: 3148–3151.

    PubMed  CAS  Google Scholar 

  22. Leatherbarrow RJ, Rademacher TW, Dwek RA (1985) Effector functions of agalactosylated mouse IgG2a: binding and activation of complement component Clq and interaction with human monocyte Fc receptor. Mol Immunol; 22: 407–415.

    CrossRef  PubMed  CAS  Google Scholar 

  23. Nose M, Wizgell H (1983) Biological significance of carbohydrate chains on monoclonal antibodies. Proc Natl Acad Sci USA; 80: 6632–6636.

    CrossRef  PubMed  CAS  Google Scholar 

  24. Schorlemmer HU, Hofstatter T, Seiler FR (1984) Phagocytosis of immune complexes by human neutrophils and monocytes: relative importance of Fc and C3b receptors. Behring Inst Mitt; 76: 88–97.

    PubMed  CAS  Google Scholar 

  25. Weiss SJ, Ward PA (1982) Immune complex induced generation of oxygen metabolites by human neutrophils. J. Immunol; 129 (1): 309–313.

    PubMed  CAS  Google Scholar 

  26. Goldstein IM, Cerqueira M, Lind S, Kaplan HB (1977) Evidence that the superoxide generating system of human neutrophils is associated with the cell surface. J Clin Invest; 59: 249–254.

    CrossRef  PubMed  CAS  Google Scholar 

  27. Henson PM, Johnson HB, Spiegelberg HL (1972) The release of granule enzymes from human neutrophils stimulated by aggregated immunoglobulins of different classes and subclasses. J Immunol; 109 (6): 1182–1192.

    PubMed  CAS  Google Scholar 

  28. Henson PM, Oades ZG (1975) Stimulation of human neutrophils by soluble and insoluble aggregates. J Clin Invest; 56: 1053–1061.

    CrossRef  PubMed  CAS  Google Scholar 

  29. Hofstater T, Guthortein G, Kanzy E-J et al (1984) The interaction of IgG with Fc gamma G receptors on human neutrophils. Behring Inst Mitt; 76: 75–87.

    Google Scholar 

  30. Blackburn ND, Koopman WJ, Schrohenloher RE, Heck LW (1986) Induction of neutrophil enzyme release by rheumatoid factors; evidence for differences based on molecular characteristics. Clin Immunol Immunopathol; 40: 347–355.

    CrossRef  PubMed  CAS  Google Scholar 

  31. Ozaki Y, Ohashi T, Niwa Y et al (1986) Oxygen radical production by neutrophils from patients with bacterial infections and rheumatoid arthritis. Inflamm; 10 (2): 119–130.

    CrossRef  CAS  Google Scholar 

  32. Niwa Y, Sakone H, Shingu M et al (1983) The effect of stimulated neutrophils from the synovial fluid of patients with rheumatoid arthritis on lymphocytes. A possible role of increased oxygen radicals generated by neutrohpils. J Clin Immunol; 3 (2): 228–240.

    CrossRef  PubMed  CAS  Google Scholar 

  33. Todorski T, Shingu M, Ezaki I, Nobunaga M (1986) Superoxide generation by synovial fluid neutrophils is enhanced by immune complexes and suppressed by rheumatoid factor in synovial fluid. Rheum Int; 6: 133–137.

    CrossRef  Google Scholar 

  34. Katayama S, Chia D, Nasu H, Knutson DW (1981) Increased Fc receptor activity in monocytes from patients with rheumatoid arthritis: a study of monocyte binding and catabolism of soluble aggregates of IgG in vivo. J Immunol; 127 (2): 643–647.

    PubMed  CAS  Google Scholar 

  35. Breedveld FC, Lafeber GJM, De Vries et al (1984) Fc receptor on human granulocytes from patients with rheumatoid arthritis and Felty’s syndrome. Clin Exp Immunol; 55: 677–683.

    PubMed  CAS  Google Scholar 

  36. Coble BI, Dahlgren C, Hed J, Stendahl O (1984) Myeloperoxidase reduces the opsonizing activity of immunoglobulin G and complement component C3b. Biochim Biophys Acta; 802: 501–505.

    CrossRef  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Griffiths, H.R., Lunec, J. (1995). Agalactosylation by Reactive Oxygen Species and Fc Related Changes to Function. In: Alavi, A., Axford, J.S. (eds) Glycoimmunology. Advances in Experimental Medicine and Biology, vol 376. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1885-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1885-3_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5768-1

  • Online ISBN: 978-1-4615-1885-3

  • eBook Packages: Springer Book Archive