Skip to main content

Signal Transduction Through Laminin Receptors. Effects of Extracellular Matrix on BCS-TC2 Adenocarcinoma Cells

  • Chapter
Cell Signal Transduction, Second Messengers, and Protein Phosphorylation in Health and Disease

Summary

The alterations of the extracellular matrix play a critical role in the establishment, growth and invasiveness of tumors. We have reported an altered collagen metabolism in a human colon adenocarcinoma; the relative collagen content in the tumor was significantly lower than in normal tissue. This is due to a permanent phenotypic alteration in the tumor-associated fibroblast-like cells. The cell line BCS-TC2 established from this primary human colon adenocarcinoma maintains in culture several characteristics of the original tumor. We have studied the effects of extracellular matrix proteins on the behavior of BCS-TC2 cells. The modulation of the AMPase activity of 5′-nucleotidase by laminin and fibronectin suggest a possible function of the ectoenzyme as a cell receptor for matrix proteins. BCS-TC2 cell adhesion to laminin indicates the presence of different laminin receptors, among them, several integrins and the 67-kDa high-affinity laminin receptor. Integrins, talin and tyrosine phosphorylation activity, located into the focal adhesion sites could be implicated in the signal transduction by receptor from extracellular matrix. The expression of the 67-kDa laminin receptor, is modulated by laminin, and may contribute to BCS-TC2 cells interaction with the basement membranes, and it seems to be related to the invasive properties of these cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.E. Postlethwaite and A.H. Kang, Fibroblasts and matrix proteins, in: “Inflammation: Basic Principles and Clinical Correlates,” J.I. Gallin, I.M. Goldstein and R. Snyderman,ed., Raven Press, Ltd., New York (1992).

    Google Scholar 

  2. Ch. M. Lapierre and T. Krieg, “Connective tissue diseases of the skin”, Marcel Dekker,Inc., New York (1993)

    Google Scholar 

  3. R. Timpl, Structure and biological activity of basement proteins, Eur. J. Biochem. 180: 487 (1989).

    Article  PubMed  CAS  Google Scholar 

  4. M. Paulsson, Basement membrane proteins: structure, assembly, and cellular interactions,Crit. Rew. Biochem. Mol. Biol. 27: 93 (1992).

    Article  CAS  Google Scholar 

  5. E.D. Hay. “Cell Biology of Extracellular Matrix”, Plenum Press, New York (1991).

    Book  Google Scholar 

  6. M. van der Rest and R. Garrone, Collagen family of proteins, FASEB J. 5: 2814 (1991).

    PubMed  Google Scholar 

  7. R. Fleischmajer, B.B. Olsen and K. Kühn. “Structure, Molecular Biology, and Pathology of Collagen,” New York Academic of Sciences, New York (1990).

    Google Scholar 

  8. P.M. Royce and B. Steinmann, “Connective tissue and its heritable disorders”, Willey-Liss,New York (1993).

    Google Scholar 

  9. K. Beck, I. Hunter and J. Engel, Structure and function of laminin: anatomy of a multido main glycoprotein, FASEB J. 4: 148 (1990).

    PubMed  CAS  Google Scholar 

  10. R.O. Hynes and K.M. Yamada, Fibronectins: multifunctional modular glycoproteins, J.Cell Biol. 95: 369(1982).

    Article  PubMed  CAS  Google Scholar 

  11. R.O. Hynes. “Fibronectins,” Springer-Verlag, New York (1989).

    Google Scholar 

  12. L. Kjellen and U. Lindahl, Proteoglycans: structures and interactions, Annu. Rev. Bio chem. 60: 443 (1991).

    CAS  Google Scholar 

  13. T.E. Hardingham and A.J. Fosang, Proteoglycans: many forms and many functions,FASEB J. 6: 861 (1992).

    PubMed  CAS  Google Scholar 

  14. L.A Liotta, C.N Rao and U.M Wewer, Biochemical interactions of tumor cells with base ment membrane. Ann Rev Biochem 55: 1037 (1986).

    Article  PubMed  CAS  Google Scholar 

  15. E. Ruoslahti, Control of cell motility and tumor invasion by extracellular matrix interactions, Br. J. Cancer 66: 239 (1992).

    Article  PubMed  CAS  Google Scholar 

  16. M. Nakajima and A.M. Chop, Tumor invasion and extracellular matrix degradative enzymes: regulation of activity by organ factors. Semin Cancer Biol 2: 115 (1991).

    PubMed  CAS  Google Scholar 

  17. J. Turnay, N. Olmo, J.G. Gavilanes and M.A. Lizarbe, Collagen metabolism in human colon adenocarcinoma. Connect Tissue Res 33: 251 (1989).

    Article  Google Scholar 

  18. J. Turnay, N. Olmo, J.G. Gavilanes and M.A. Lizarbe, Fibroblasts-like primary cells from human adenocarcinoma explants: collagen biosynthesis. In vitro Cell Dev Biol 27: 447 (1991).

    Article  Google Scholar 

  19. J. Turnay, N. Olmo, J.G. Gavilanes, J. Benitez and M.A. Lizarbe, Establishment and characterization of a new human colon adenocarcinoma cell line: BCS-TC2. Cytotechnology 3: 75 (1990).

    Article  PubMed  CAS  Google Scholar 

  20. J. Turnay, N. Olmo, T. López, and M.A. Lizarbe, Influence of extracellular matrix com ponents on the behaviour of BCS-TC2 cells, a human adenocarcinoma cell line, In vitro Cell Dev Biol (Submitted)

    Google Scholar 

  21. S. Aznavoorian, L.A. Liotta and H.Z. Kupchika, Characteristics of invasive and non-inva sive human colorectal adenocarcinoma cells, J. Natl. Cancer. Inst. 82: 1485 (1990).

    Article  PubMed  CAS  Google Scholar 

  22. G.W. Daneker, A.J. Piazza,G.D. Steele and A.M. Mercurio, Relationship between extra cellular matrix interactions and degree of differentiationin human colon carcinoma cell lines, Cancer Res. 49: 681 (1989).

    PubMed  CAS  Google Scholar 

  23. V.P. Terranova, E.S. Hujanen, D.M. Loeb, G.R. Martin, L. Thornburg and V. Glusko,Use a reconstituted basement membrane to measure cell invasiveness and select for highly invasive tumor cells, Proc. Natl. Acad. Sci. USA 83: 465 (1986).

    Article  PubMed  CAS  Google Scholar 

  24. E. Engvall, Larninin variants: why, where and when?, Kidney Int 43: 2 (1993)

    Article  PubMed  CAS  Google Scholar 

  25. R. Timpl, H. Rhode, P.G. Robey, S.I. Rennard, J.M. Foidart and G.R. Martin, Larninin -a glycoprotein from basement membranes, J. Biol. Chem. 254: 9933 (1979).

    PubMed  CAS  Google Scholar 

  26. T.M. Sweeney, M.C. Kibbey, M. Zain, R. Fridman and H.K. Kleinman, Basement mem brane and the SIKVAV laminin-derived peptide promote tumor growth and metastases, Cancer Met. Rev. 10: 245 (1991).

    Article  CAS  Google Scholar 

  27. E.C. Lee, M.N. Lotz, G.D. Steele and A.M. Mercurio, The integrin α6β4 is a larninin receptor, J. Cell Biol. 117: 671 (1992).

    Article  PubMed  CAS  Google Scholar 

  28. S.K. Akiyama, K. Nagata and K.M. Yamada, Cell surface receptors for extracellular matrix components, Biochim. Biophys. Acta 1031: 91 (1990).

    Article  PubMed  CAS  Google Scholar 

  29. R.P. Mecham, Larninin receptors, Annu. Rev. Cell Biol. 7: 71 (1991).

    Article  PubMed  CAS  Google Scholar 

  30. A.M. Mercurio and L.M. Shaw, Larninin binding proteins, BioEssays 13: 469 (1991).

    Article  PubMed  CAS  Google Scholar 

  31. A. Sonnenberg, Larninin receptors in the integrin family, Pathol. Biol. 40: 773 (1992).

    PubMed  CAS  Google Scholar 

  32. V. Castronovo, Larninin receptors and laminin-binding proteins during tumor invasion and metastasis, Invas. Metas. 13: 1 (1993).

    CAS  Google Scholar 

  33. S.M. Albelda and C.A. Buck, Integrins and other cell adhesion molecules, FASEB J.4: 2868 (1990).

    PubMed  CAS  Google Scholar 

  34. S.M. Albelda, Role of integrins and other cell adhesion molecules in tumor progression and metastasis, Lab Invest 68: 4 (1993).

    PubMed  CAS  Google Scholar 

  35. E. Ruoslahti, Integrins, J. Clin. Invest. 87: 1 (1991).

    Article  PubMed  CAS  Google Scholar 

  36. R.O. Hynes, Integrins: versatility, modulation, and signalling in cell adhesion, Cell 69: 11 (1992).

    Article  PubMed  CAS  Google Scholar 

  37. R.L. Juliano and S. Kaskill, Signal transduction from the extracellular matrix, J. Cell Biol.120: 533 (1993).

    Article  Google Scholar 

  38. D. Ingber, Integrins as mechanochemical transducers, Curr. Opin. Cell Biol. 3: 841 (1991).

    Article  PubMed  CAS  Google Scholar 

  39. C.E. Turner and K. Burridge, Transmembrane molecular assemblies in cell-extracellular matrix interactions, Curr. Opin. Cell Biol. 3: 849 (1991).

    Article  PubMed  CAS  Google Scholar 

  40. M.M. Rasenick, CM. O’Callahan, C.A. Moore, and R.S. Kaplan, GTP-binding proteins which regulate neuronal adenylate cyclase interact with microtubule proteins, in: “Microtubules and microtubules inhibitors,” M. De Brabander and J. De Mey, eds., ElsevierScience Publishers B.V., Amsterdam (1985).

    Google Scholar 

  41. A. Horvath and S. Kellie, Regulation of integrin motility and cytoskeletal association in normal and RSV-transformed chick embryo fibroblasts, J. Cell Sci. 97: 307 (1990).

    PubMed  CAS  Google Scholar 

  42. L.M. Shaw, J.M. Messier and A.M. Mercurio, The activation dependent adhesion of macrophages to larninin involves cytoskeletal anchoring and phosphorylation of the α6 β 1 integrin, J. Cell Biol. 110: 2167 (1990).

    Article  PubMed  CAS  Google Scholar 

  43. W.G. Carter, P. Kauer, S.G. Gil, P.J. Gahr and E.A. Wayner, Distinct functions for inte grins α6 β 1/ in focal adhesions and α6β4/bullous pemphigoid antigen in a new stable anchoring contact (SAC) of keratinocytes: relation to hemidesmosomes, J. Cell Biol. 111: 3141 (1990).

    Article  PubMed  CAS  Google Scholar 

  44. C.H. Damsky and Z. Werb, Signal transduction by integrin receptors for extracellular matrix: cooperative processing of extracellular information, Cuur. Opin. Cell Biol. 4: 772 (1992).

    Article  CAS  Google Scholar 

  45. I. Zachary and E. Rozengurt, Focal adhesion kinase (p125FAK): a point of convergence in the action of neuropeptides, integrins, and oncogenes, Cell, 71: 891 (1992).

    Article  PubMed  CAS  Google Scholar 

  46. A.D. Yurochko, D.Y. liu, D. Eierman and S. Haskill, Integrins as a primary signal trans duction molecule regulating monocyte-early gene induction, Proc. Natl. Acad. Sci. USA 89: 9034–9038.

    Google Scholar 

  47. R. Flaumenhaft and D.B. Rifkin, Extracellular matrix regulation of growth factor and protease activity, Curr. Opin. Cell Biol. 3: 817 (1991).

    Article  PubMed  CAS  Google Scholar 

  48. J. Graf, R.C. Ogle, F.A. Robey, M. Sasaki, G.R. Martin, Y. Yamada and H.K.Kleimman, A pentapeptide from the laminin B1 chain mediates cell adhesion and binds the 67000 laminin receptor, Biochemistry 26: 6896 (1987).

    Article  PubMed  CAS  Google Scholar 

  49. V. Cioce, I.M.K. Margulies, M.E. Sobel and V. Castronovo, Interaction between the 67 kilodalton metastasis-associated laminin receptor and laminin, Kidney Int. 43: 30 (1993).

    Article  PubMed  CAS  Google Scholar 

  50. V. Castronovo, A.P. Claysmith, K.T. Barker, V. Cioce, H.C. Krutzsch and M.E. Sobel, Biosynthesis of the 67 kDa high affinity laminin receptor, Biochem Biophys Res Commun 177:177 (1991).

    Article  PubMed  CAS  Google Scholar 

  51. V. Castronovo, G. Taraboletti and M.E. Sobel, Functional domains of the 67-kDa laminin receptor precursor, J. Biol. Chem. 266: 20440 (1991).

    PubMed  CAS  Google Scholar 

  52. M.E. Sobel ME, Differential expression of the 67 kDa laminin receptor in cancer. Semin.Cancer Biol 4: 311 (1993).

    PubMed  CAS  Google Scholar 

  53. S.P. Massia, S.S. Rao and J.A. Hubbel, Covalently immobilized laminin peptide Tyr-Ile-Gly-Ser-Arg (YIGSR) supports cell spreading and co-localization of the 67-kilodalton laminin receptor with α-actinin and vinculin, J. Biol. Chem. 268: 8053 (1993).

    PubMed  CAS  Google Scholar 

  54. A. Hinek, M. Rabinovitch, F. Keeley, Y. Okamura-Oho and J. Callahan, The 67-kD elastin/laminin binding protein is related to an enzymatically inactive, alternatively spliced form of β-galactosidase, J. Clin. Invest. 91: 1198 (1993).

    Article  PubMed  CAS  Google Scholar 

  55. N. Olmo, J. Turnay, J.M. Navarro, T. Lopez, K. von der Mark and M.A. Lizarbe, Interaction of BCS-TC2 cells (human adenocarcinoma cell line) with laminin. Identification of a 67-kDa laminin receptor, J. Cell Biochem. (Submitted)

    Google Scholar 

  56. V. Castronovo and M.E. Sobel, Laminin and fibronectin increase the steady state level of the 67 kD high affinity metastasis-associated laminin receptor mRNA in human cancer cells, Biochem. Biophys. Res. Commun 168: 1110 (1990).

    Article  PubMed  CAS  Google Scholar 

  57. J.G. Tidball, Identification and distribution of a novel, collagen-binding protein in the developing subepicaradium and endomysium, J. Biol. Chem. 267: 21211 (1992).

    PubMed  CAS  Google Scholar 

  58. H. Zimmermann, 5’-nucleotidase: molecular structure and functional aspects. Biochem.J. 285: 345 (1992).

    PubMed  CAS  Google Scholar 

  59. J. Turnay, N. Olmo, J.M. Navarro, J.G. Gavilanes and M.A. Lizarbe, Isolation and characterization of the ecto-5’-nucleotidase from a rat glioblastoma cell line. Mol. Cell Biochem. 117: 23 (1992).

    Article  PubMed  CAS  Google Scholar 

  60. J. Turnay, N. Olmo, G. Risse, K. von der Mark and M.A. Lizarbe, 5’-Nucleotidase activity in cultured cell lines. Effect of different assay conditions and implications of cell proliferation. In vitro Cell Dev Biol 25: 1055 (1989).

    Article  PubMed  CAS  Google Scholar 

  61. J. Dieckhoff, J. Mollenhauer, U. Kühl, V. Niggemeyer, K. von der Mark and H.G.Mannherz, The extracellular matrix proteins laminin and fibronectin modify the AM-Pase activity of 5’-nucleotidase from chicken gizzard smooth muscle, FEBS Lett. 195: 82 (1986).

    Article  PubMed  CAS  Google Scholar 

  62. N. Olmo, J. Turnay, G. Risse, R. Deutzmann, K. von der Mark and M.A. Lizarbe, M.A.Modulation of 5’-nucleotidase activity in plasma membranes and intact cells by extracellular matrix proteins laminin and fibronectin, Biochem. J. 282: 181 (1992).

    PubMed  CAS  Google Scholar 

  63. S.K. Akiyama, S.S. Yamada, W.T. Chen and K.M. Yamada, Analysis of fibronectin receptors function with monoclonal antibodies: roles in cell adhesion, migration, matrix assembly, and cytoskeletal organization, J. Cell Biol. 109: 863 (1989).

    Article  PubMed  CAS  Google Scholar 

  64. U. Stochaj and H.G. Mannherz, Chicken gizzard 5’-nucleotidase functions as a binding protein for the laminin/nidogen complex, Eur. J. Cell. Biol. 59: 364–372, 1992.

    PubMed  CAS  Google Scholar 

  65. U. Stochaj, H. Richter and H.G. Mannherz, Chicken gizzard 5’-nucleotidase is a receptor for the extracellular matrix component fibronectin, Eur. J. Cell Biol. 51: 335 (1990).

    PubMed  CAS  Google Scholar 

  66. M. Vogel, H.J. Kowalewski, H. Zimmermann, A. Janetzko, R.U. Margolis and H.E.Wollny, Soluble low-Km 5’-nucleotidase from electric-ray (Torpedo marmorata) electric organ and bovine cerebral cortex is derived from the glycosyl-phosphatidyl-inosi-tol-anchored ectoenzyme by phospholipase C clevage, Biochem. J. 284: 621 (1992).

    PubMed  CAS  Google Scholar 

  67. U. Stochaj, F. Floke, W. Mathes and H.G. Mannherz, 5’-Nucleotidase of chicken gizzard and human pancreatic adenocarcinoma cells are anchored to the plasma membrane via a phosphatidylinositol-glycan, Biochem. J. 262: 33 (1989).

    PubMed  CAS  Google Scholar 

  68. P.J. Robinson, Signal transduction by GPI-anchored membrane proteins, in: “GPI mem brane anchors,” M. Lucia Cardoso de Almeida, ed., Academic Press Ltd, London (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Olmo, N., Lizarbe, M.A. (1994). Signal Transduction Through Laminin Receptors. Effects of Extracellular Matrix on BCS-TC2 Adenocarcinoma Cells. In: Municio, A.M., Miras-Portugal, M.T. (eds) Cell Signal Transduction, Second Messengers, and Protein Phosphorylation in Health and Disease. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1879-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1879-2_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5765-0

  • Online ISBN: 978-1-4615-1879-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics