Tyrosine Phosphatases in Cell Cycle and Transformation

  • Edmond H. Fischer


The first part of this article is devoted to a historical overview of cellular regulation by protein phosphorylation. The field originated with a study of glycogen phosphorylase and the cascade system by which this enzyme can be activated. Reversible protein phosphorylation can be considered today as one of the most prevalent mechanism of control of biological systems. The second part will be devoted to protein tyrosine phosphatases (PTPs), an expanding family of intracellular and receptor-linked enzymes, and their involvement in cell cycle and transformation. Most transmembrane forms contain two catalytic domains but highly variable external segments. Likewise, the low Mr PTPs display a great variety of regulatory segments either preceding or following highly conserved catalytic domains. Deletion of the regulatory segment from a T-cell PTP and overexpression of the truncated enzyme in BHK cells results in multinucleation and asynchronous nuclear division. Furthermore, growth on soft agar and tumor formation in nude mice is inhibited. Similar results are obtained with rat-2 cells transformed with v-fms. The data indicate that, depending on the type of phosphatases involved and their localization within the cells, PTPs can act either synergistically or antagonistically with the tyrosine kinases to elicit a particular physiological response.


Catalytic Domain Tyrosine Phosphatase Protein Tyrosine Phosphatase Glycogen Phosphorylase Regulatory Segment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cori, G.T. and Green, A.A. (1943) J. Biol. Chem. 31–38Google Scholar
  2. 2.
    Cori, G.T. and Cori, C.F. (1945) J. Biol. Chem. 321–332Google Scholar
  3. 3.
    Fischer, E.H. and Krebs, E.G. (1955) J. Biol. Chem. 216, 121–132PubMedGoogle Scholar
  4. 4.
    Krebs, E.G. and Fischer, E.H. (1956) Biochim. Biophys. Acta 20, 150–157PubMedCrossRefGoogle Scholar
  5. 5.
    Sutherland, E.W. and Wosilait, W.D. (1955) Nature 175, 169PubMedCrossRefGoogle Scholar
  6. 6.
    Rall, T.W., Sutherland, E.W., and Wosilait, W.D. (1956) J. Biol. Chem. 218, 483PubMedGoogle Scholar
  7. 7.
    Wosilait, W.D. (1958) J. Biol. Chem. 233, 597PubMedGoogle Scholar
  8. 8.
    Sutherland, E.W. and Rall, T.W. (1958) J. Biol. Chem. 233, 1077–1091Google Scholar
  9. 9.
    Edelman, A.M., Blumenthal, D.K., and Krebs, E.G. (1987) Annu. Rev.Biochem. 56, 567–613PubMedCrossRefGoogle Scholar
  10. 10.
    Brugge, J.S. and Erikson, R.L. (1977) Nature 269, 346–347PubMedCrossRefGoogle Scholar
  11. 11.
    Collett, M.S. and Erikson, R.L. (1978) Proc. Natl. Acad. Sci. USA 75, 2021–2024PubMedCrossRefGoogle Scholar
  12. 12.
    Levinson, A.D., Oppermann, H., Levintow, L., Varmus, H.E., and Bishop, J.M. (1978) Cell 15, 561–572PubMedCrossRefGoogle Scholar
  13. 13.
    Ushiro, H. and Cohen, S. (1980) J. Biol. Chem. 255, 8363–8365PubMedGoogle Scholar
  14. 14.
    Carpenter, G. (1987) Annu. Rev. Biochem. 56, 881–914PubMedCrossRefGoogle Scholar
  15. 15.
    Yarden, Y. and Ullrich, A. (1988) Annu. Rev. Biochem. 57, 443–478PubMedCrossRefGoogle Scholar
  16. 16.
    Downward, J., Yarden, Y., Mayes, E., Scrace, G., Totty, N., Stockwell, P., Ullrich, A., Schlessinger, J., and Waterfield, M.D.(1984) Nature 307, 521–527PubMedCrossRefGoogle Scholar
  17. 17.
    Ullrich, L., Coussens, L., Hayflick, J.S., Dull, T.J., Gray, A., Tam, A.W., Lee, J., Yarden, Y., Libermann, T.A., Schlessinger, J.,Downward, J., Mayes, E.L.V., Whittle, N., Waterfield, M.D., and Seeburg, P.H. (1984) Nature 309, 418–425PubMedCrossRefGoogle Scholar
  18. 18.
    Hunter, T. (1991) Methods. Enzymol. 200, 3–37PubMedCrossRefGoogle Scholar
  19. 19.
    (1989) Oncogenes and the Molecular Origins of Cancer, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  20. 20.
    Carpenter, G., King, L., and Cohen, S. (1979) J. Biol. Chem. 254, 4884–4891PubMedGoogle Scholar
  21. 21.
    Sefton, B.M., Hunter, T., Beemon, K., and Eckhart, W. (1980) Cell 20, 807–816PubMedCrossRefGoogle Scholar
  22. 22.
    Fischer, E.H., Charbonneau, H., and Tonks, N.K. (1991) Science 253, 401–406PubMedCrossRefGoogle Scholar
  23. 23.
    Saito, H. and Streuli, M. (1991) Cell Growth and Differ. 2, 59–65Google Scholar
  24. 24.
    Charbonneau, H. and Tonks, N.K. (1992) Annu. Rev. Cell Biol. 8, 463–493PubMedCrossRefGoogle Scholar
  25. 25.
    Tonks, N.K., Diltz, C.D., and Fischer, E.H. (1988) J. Biol. Chem. 263, 6731–6737PubMedGoogle Scholar
  26. 26.
    Tonks, N.K., Diltz, C.D., and Fischer, E.H. (1988) J. Biol. Chem. 263, 6722–6730PubMedGoogle Scholar
  27. 27.
    Charbonneau, H., Tonks, N.K., Kumar, S., Diltz, C.D., Harrylock, M., Cool, D.E., Krebs, E.G., Fischer, E.H., and Walsh, K.A.(1989) Proc. Natl. Acad. Sci. USA 86, 5252–5256PubMedCrossRefGoogle Scholar
  28. 28.
    Charbonneau, H., Tonks, N.K., Walsh, K.A, and Fischer, E.H. (1988) Proc. Natl. Acad. Sci. USA 85, 7182–7186PubMedCrossRefGoogle Scholar
  29. 29.
    Thomas, M.L. (1989) Annu. Rev. Immunol. 7, 339–369PubMedCrossRefGoogle Scholar
  30. 30.
    Barnea, G., Silvennoinen, O., Shaanan, B., Honegger, AM., Canoll, P.D., D’Eustachio, P., Morse, B., Levy, J.B., LaForgia, S.,Huebner, K., Musacchio, J.M., Sap, J., and Schlessinger, J. (1992) Mol. Cell. Biol. 13, 1497–1506Google Scholar
  31. 31.
    Krueger, N.X. and Saito, H. (1992) Proc. Natl. Acad. Sci. USA 89, 7417–7421PubMedCrossRefGoogle Scholar
  32. 32.
    Walton, K.M. and Dixon, J.E. (1993) Annu. Rev. Biochem. 62, 101–120PubMedCrossRefGoogle Scholar
  33. 33.
    Cool, D.E., Tonks, N.K., Charbonneau, H., Walsh, K.A., Fischer, E.H., and Krebs, E.G. (1989) Proc. Natl. Acad. Sci. USA 86,5257–5261PubMedCrossRefGoogle Scholar
  34. 34.
    Cool, D.E, Tonks, N.K., Charbonneau, H., Fischer, E.H., and Krebs, E.G. (1990) Proc. Natl. Acad. Sci. USA 87, 7280–7284PubMedCrossRefGoogle Scholar
  35. 35.
    Zander, N.F., Lorenzen, J.A., Cool, D.E., Tonks, N.K., Daum, G., Krebs, E.G., and Fischer, E.H. (1991) Biochemistry 30, 6964–6970PubMedCrossRefGoogle Scholar
  36. 36.
    Cool, D.E., Andreassen, P.R., Tonks, N.K., Krebs, E.G., Fischer, E.H., and Margolis, R.L. (1992) Proc. Natl. Acad. Sci. USA 89,5422–5426PubMedCrossRefGoogle Scholar
  37. 37.
    Fujiwara, K. and Pollard, T.D. (1976) J. Cell Biol. 71, 848–875PubMedCrossRefGoogle Scholar
  38. 38.
    Sato, N., Yonemura, S., Obinata, T., and Tsukita, S. (1991) J. Cell Biol. 113, 321–330PubMedCrossRefGoogle Scholar
  39. 39.
    Zander, N.F., Cool, D.E., Diltz, C.D., Rohrschneider, L.R., Krebs, E.G., and Fischer, E.H. (1993) Oncogene 8, 1175–1182PubMedGoogle Scholar
  40. 40.
    McDonough, S.K., Larsen, S., Brodey, R.S., Stock, N.D., and Hardy, W.D.Jr. (1971) Cancer Res. 31, 953–956PubMedGoogle Scholar
  41. 41.
    Sherr, C.J. (1988) Biochim. Biophys. Acta 948, 225–243PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Edmond H. Fischer
    • 1
  1. 1.Department of BiochemistryUniversity of WashingtonSeattleUSA

Personalised recommendations