Skip to main content

Summary

The diadenosine polyphosphates -ApnA- are stored in secretory granules together with ATP and aminergic compounds: with serotonin in the dense granules of platelets, with acetylcholine in torpedo synaptic vesicles and with adrenaline and noradrenaline in chromaffin granules of adrenal medulla. The vesicular content in neural tissues is released to the extracellular media in a Ca2+ dependent way and in equimolecular ratios with respect to the other costored compounds. Cultured bovine neurochromaffin cells, torpedo synaptosomes and rat brain synaptic terminals, show the existence of specific binding sites for diadenosine polyphosphates. Two high affinity binding sites are found in these neural models with Kd values ranging from 0.1 to 0.7 nM for the first site and 5 to 6 nM for the second binding site. Displacement studies with P2-purinoceptor ligands present a particular potency order, suggesting the presence of a new receptor subtype in rat brain synaptic terminals, designated as P2d- The diadenosine polyphosphate receptors in neurochromaffin cells and vascular endothelial cells from adrenal medulla are coupled to Ca2+ release from internal stores and stimulation of Protein Kinase C. These intracellular signals cause the inhibition of catecholamine secretion from bovine chromaffin cells and induce a negative feedback for excitation in rat hippocampus. Both Ap4A and Ap5A evoke a fast rise in the [Ca2+]i in endothelial cells from bovine adrenal medulla, the effect is concentration dependent, and the EC50 is in the range 1–10 μM. The extracellular destruction of adenine dinucleotides is carried out by an ectodinucleoside polyphosphate hydrolase with high affinity, the Km values being close to 2 μM for the different diadenosine polyphosphates. The adenine mononucleotides produced are degraded to adenosine by the ecto-nucleotidases cascade. This nucleoside can be considered as the last extracellular product of purinergic transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbracchio, M.P., Cattabeni, F, Fredholm, B.B., and Williams, M. (1993). Purinoceptor nomenclature: A status report. Drug. Development Research., 28, 207–213.

    CAS  Google Scholar 

  • Burnstock, G. (1978). A basis for distinguishing two types of purinergic receptor. In Straub, R.W., Bolis, L. (eds). Cell membrane receptors for drugs and hormones: A multidisciplinary approach. New York, Raven Press. 107–118.

    Google Scholar 

  • Burnstock, G. (1993). Physiological and pathological roles of purines: an update. Drug Development Research., 28, 195–206.

    Article  CAS  Google Scholar 

  • Busse, R., Ogilvie,A. and Pohl, U. (1988). Vasomotor activity of diadenosine triphosphate and diadenosine tetraphosphate in isolated arteries. Am. J. Physiol., 254, H828–H823.

    PubMed  CAS  Google Scholar 

  • Casillas, T., Delicado, E.G. and Miras-Portugal, M.T. (1993). Adenosine 5’triphosphate modulation of nitrobenzylthioinosine binding sites in plasma membranes of bovine chromaffin cells. Neurosci. Lett., 159, 1–4.

    Article  Google Scholar 

  • Castro, E., Torres, M., Miras-Portugal, M.T. and Gonzalez, M.P. (1990). Effect of diadenosine polyphosphates on catecholamine secretion from isolated chromaffin cells. Br. J. Pharmacol., 100, 360–364.

    Article  PubMed  CAS  Google Scholar 

  • Castro, E., Pintor, J. and Miras-Portugal, M.T. (1992). Ca2+-stores mobilization by diadenosine tetraphosphate, Ap4A, through a putative P2y purinoceptor in adrenal chromaffin cells. Br. J. Pharmacol., 106, 833–837.

    Article  PubMed  CAS  Google Scholar 

  • Castro, E. , Tomé, A.J.R., Miras-Portugal, M.T. and Rosario, L.M. (1993). Receptores purinérgicos en cé1ulas cromafines: mecanismos de acción y distribución celular. XIV Reunión Nacional Grupo Español de la Celula Cromafin. pp-41.

    Google Scholar 

  • Castro, E., Tomé, A.R., Miras-Portugal, M.T. and Rosario, L.M. (1994). Single cell fura-2-microfluorometry reveals different purinoceptor subtypes coupled to Ca2+ influx and intracellular Ca2+ release in bovine adrenal chromaffin and endothelial cells. Pflügers Arch. Eur. J. Physiol., (in press).

    Google Scholar 

  • Finamore, F.J. and Warner, A.H. (1963). The occurrence of P1,P4-diguanosine 5’tetraphosphate in brine shrimp eggs. J. Biol. Chem., 238, 344–348.

    PubMed  CAS  Google Scholar 

  • Flodgaard, H. and Klenow, H. (1982). Abundant amounts of diadenosine 5,,5’’’-p1,p4tetraphosphate are present and releasable, but metabolically inactive in human platelets. Biochem.J., 208, 737–742.

    PubMed  CAS  Google Scholar 

  • Goldman, S.J., Gordon, E.L., and Slakey, L.L. (1986). Hydrolysis of diadenosine 5’5“-p’-p”-triphosphate (Ap3A) by porcine aortic endothelial cells. Circ. Res., 59, 362–366.

    Article  PubMed  CAS  Google Scholar 

  • Grummt, F., Waltz, G., Jantzen, H.-M., Hamprecht, K., Huebscher, U., and Kuenzle, C.C. (1979). Diadenosine 5’,5’’’-P1,P4-tetraphosphate, a ligand of the 57-kilodalton subunit of DNA polymerase alfa. Proc. Natl. Acad. Sci. USA., 76, 6081–6085.

    Article  PubMed  CAS  Google Scholar 

  • Hilderman, R.H., Martin, M., Zimmerman, J.K. and Pivorum, E.B. (1991). Identification of a unique membrane receptor for adenosine 5’,5’’’-P1,P4-tetraphosphate. J. Biol. Chem., 266, 6915–6918.

    PubMed  CAS  Google Scholar 

  • Hoyle,C.H.V. (1990). Pharmacological activity of adenine dinucleotides in the periphery: possible receptor classes and transmitter function. Gen.Pharmac., 21, 827–831.

    Article  CAS  Google Scholar 

  • Klishin, A., Lozovaya, N., Pintor, J., Miras-Portugal, M. and Krishtal, O.A. (1994). Possible functional role of diadenosine polyphosphates: Negative feedback for excitation in hippocampus. Neuroscience, 58, 235–236.

    Article  PubMed  CAS  Google Scholar 

  • Krishtal, O.A., Marchenko, S.M., Obukhov, A.G. and Volkova, T.M. (1988). Receptors for ATP in rat sensory neurones: the structure-function relationship for ligands. Br. J. Pharmacol., 95, 1057–1062.

    Article  PubMed  CAS  Google Scholar 

  • Lustig, K.D., Shiau, A.K., Brake, A.J. and Julius, D. (1993). Expression cloning of an ATP receptor from mouse neuroblastoma cells. Proc. Natl. Acad. Sci. USA., 90, 5113–5117.

    Article  PubMed  CAS  Google Scholar 

  • Lüthje, J. and Ogilvie, A. (1983). Presence of diadenosine 5’,5’’’-p1,P4-triphosphate (Ap3A) in human platelets. Biochem. Biophys. Res. Commun., 115, 253–260.

    Article  PubMed  Google Scholar 

  • Miras-Portugal, M.T., Pintor, J., Rotllán, P. and Torres, M. (1990). Characterization of ectonucleotidases in chromaffin cells. An. N.Y. Acad. Sci., 603, 523–526.

    Article  Google Scholar 

  • Ogilvie, A. (1992). Extracellular functions for ApnA. in “Ap4A and other dinucleoside polyphosphates” Ed. McLennan, A.G. CRC press 230–273.

    Google Scholar 

  • Ogilvie, A., Lüthje, J., Pohl, U. and Busse, R. (1989). Identification and partial characterization of an adenosine (5’) tetraphospho(5’)adenosine hydrolase on intact bovine aortic endothelial cells. Biochem. J., 259. 97–103.

    PubMed  CAS  Google Scholar 

  • Olsson, R.A. and Pearson, J.D.(1990). Cardiovascular purinoceptors. Physiol. Reviews., 70, 761–845.

    CAS  Google Scholar 

  • Pintor, J., Torres, M., Castro, E. and Miras-Portugal, M.T. (1991a). Characterization of diadenosine tetraphosphate (Ap4A) binding sites in cultured chromaffin cells: evidence for a P2y site. Br. J. Pharmacol., 103, 1980–1984.

    Article  PubMed  CAS  Google Scholar 

  • Pintor, J., Torres, M. and Miras-Portugal, M.T. (1991b). Carbachol induced release of diadenosine polyphosphates -Ap4A and AP5A- from perfused bovine adrenal medulla and isolated chromaffin cells. Life Sci., 48. 2317–2324.

    Article  PubMed  CAS  Google Scholar 

  • Pintor, J., Diaz-Rey, M.A., Torres, M. and Miras-Portugal, M.T. (1992a). Presence of diadenosine polyphosphates -Ap4A and AP5A- in rat brain synaptic terminals. Ca2+ dependent release evoked by 4-aminopyridine and veratridine. Neurosci. lett., 136, 141–144.

    Article  PubMed  CAS  Google Scholar 

  • Pintor, J., Kowalewski, H.J., Torres, M., Miras-Portugal, M.T. and Zimmermann, H. (1992b). Synaptic vesicle storage of diadenosine polyphosphates in the torpedo electric organ. Neurosci. Res. Commun., 10, 9–14.

    CAS  Google Scholar 

  • Pintor, J., Rotllán, P., Torres, M. and Miras-Portugal, M.T. (1992c). Characterization and quantification of diadenosine hexaphosphate in chromaffin cells: Granular storage and secretagogue-induced release. Anal. Biochem., 200, 296–300

    Article  PubMed  CAS  Google Scholar 

  • Pintor, J., Diaz-Rey, M.A. and Miras-Portugal, M.T. (1993a). Ap4A and ADP-ß-S binding to P2 purinoceptors present on rat brain synaptic terminals. Br. J. Pharmacol. 108, 1094–1099.

    Article  PubMed  CAS  Google Scholar 

  • Pintor, J. and Miras-Portugal, M.T. (1993b). Diadenosine polyphosphates (ApxA) as new neurotansmitters. Drug Development Research., 28, 259–262.

    Article  CAS  Google Scholar 

  • Pintor, J., Porras, A., Mora, F. and Miras-Portugal, M.T. (1993c). Amphetamineinduced release of diadenosine polyphosphates -Ap4A and Ap5A- from caudate putamen of conscious rat. Neurosci. Lett. 150, 13–16.

    Article  PubMed  CAS  Google Scholar 

  • Pohl, U., Ogilvie, A., Lamontagne, D., and Busse, R. (1991). Potent effects of Ap3A and Ap4A on coronary resistence and autacoid release of intact rabbit hearts. Am. J. Physiol., 260, H1692–H1697.

    PubMed  CAS  Google Scholar 

  • Rapaport, E. and Zamecnick P.C. (1976). Presence of diadenosine 5,’5’’’-P1,P4tetraphosphate (Ap4A) in mammalian cells in levels varying widely with proliferative activity of the tissue:a possible positive “pleiotypic activator”. Proc. Natl. Acad. Sci. USA., 73,3984–3988.

    Article  PubMed  CAS  Google Scholar 

  • Richardson, P.J., Brown, S.J., Bailyes, E.M. and Luzio, J.P. (1987). Ectoenzymes control adenosine modulation of inmunoisolated cholinergic synapses. Nature., 327, 232–234.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez del Castillo, A., Torres, M., Delicado, E.G. and Miras-Portugal, M.T. (1988). Subcellular distribution studies of diadenosine polyphosphates -AP4A and Ap5Ain bovine adrenal medulla: presence in chromaffin granules. J. Neurochem., 51, 1696–1703.

    Article  Google Scholar 

  • Rodriguez-Pascual, F., Torres, M. and Miras-Portugal, M.T. (1992a). Studies on the turnover of ecto-nucleotidases and ecto-dinucleoside polyphosphate hydrolase in cultured chromaffin cells. Neurosci. Res. Comm., 11, 101–107.

    CAS  Google Scholar 

  • Rodriguez-Pascual, F., Torres, M., Rotllán, P. and Miras-Portugal, M.T. (1992b). Extracellular hydrolysis of diadenosine polyphosphates, ApnA, by bovine chromaffin cells in culture. Arch. Biochem. Biophys., 297, 176–183.

    Article  PubMed  CAS  Google Scholar 

  • Rotllán, P. and Miras-Portugal, M.T. (1985). Adenosine kinase from adrenal medulla. Eur. J. Biochem., 151, 365–371.

    Article  PubMed  Google Scholar 

  • Rotllán, P., Ramos, A., Pintor, J., Torres, M., and Miras-Portugal, M.T.(1991). Di(Nl ,N6-ethenoadenosine)5’ ,5’’’ -P1,P4-tetraphosphate, a fluorescent enzymatically active derivative of Ap4A. FEBS Lett., 280, 371–374.

    Article  Google Scholar 

  • Schlüter, H., Offers, E., Brüggemann, G., van der Glet, M., Topel, M., Nordhoff, E., Karas, M., Spieker, C., Witzel, H. and Zidek, W. (1994). Diadenosine phosphates and the physiological control of blood pressure. Nature., 367, 186–188.

    Article  PubMed  Google Scholar 

  • Schmidt, R., Zimmermann, H. and Whittaker, V.P. (1980). Metal ion content of cholinergic vesicles isolated from the electric organ of torpedo: effect of stimulation induced transmitter release. Neuroscience., 5, 625–638.

    Article  PubMed  CAS  Google Scholar 

  • Sen, R.P., Delicado, E.G., Castro, E. and Miras-Portugal, M.T. (1993). Effect of P2y agonists on adenosine transport in cultured chromaffin cells. J. Neurochem., 60, 613–619.

    Article  PubMed  CAS  Google Scholar 

  • Simon, J.P. and Aunis, D. (1989). Biochemistry of the chromogranin A protein family. Biochem. J., 262, 1–13.

    PubMed  CAS  Google Scholar 

  • Stone, T.W. and Perkins, M.N. (1981). Adenine dinucleotide effects on rat cortical neurones. Brain Research., 229, 241–245.

    Article  PubMed  CAS  Google Scholar 

  • Torres, M., Pintor, J. and Miras-Portugal, M.T. (1990). Presence of ectonucleotidases in cultured chromaffin cells: hydrolysis of extracellular adenine nucleotides. Arch. Biochem. Biophys., 279, 37–44.

    Article  PubMed  CAS  Google Scholar 

  • Walter, J., Lewis, T.E., Pivorum, E.P. and Hilderman, H.R. (1993). Activation of the mouse heart adenosine 5’,5’’’-P1,P4-tetraphosphate receptor. Biochemistry., 32, 1264–1269.

    Article  Google Scholar 

  • Webb, T.E., Simon, J., Krishek, B.J., Bateson, A.N., Smart, T.G., King, B.F., Burnstock, G. and Barnard, E.A. (1993).Cloning and functional expression of a brain G-protein-coupled ATP receptor. FEBS Lett., 324, 219–225.

    Article  PubMed  CAS  Google Scholar 

  • Weber, A. and Winkler, H. (1981). Specificity and mechanism of nucleotide uptake by adrenal chromaffin granules. Neuroscience., 6, 2269–2276.

    Article  PubMed  CAS  Google Scholar 

  • Winkler, H. and Carmichael, S.W. (1982). The chromaffin granule, in “The secretory granule”,(eds.Poisner and Trifaro). Elsevier Biomedical Press. 3–79.

    Google Scholar 

  • Zamecnik, P.C., Stephenson, M.L., Janeway, C.M. and Randerath, K. (1966). Enzymatic synthesis of diadenosine tetraphosphate and diadenosine triphosphate with a purified lysyl-tRNA synthetase. Biochem. Biophys. Res. Comm., 24, 91–97.

    Article  PubMed  CAS  Google Scholar 

  • Zamecnik, P.C., Kim, B., Gao, M.J., Taylor, G., and Blackburn, G.M. (1992). Analogues of diadenosine 5’,5’’’-P1,P4-tetraphosphate (Ap4A) as potential anti-plateletaggregation agents. Proc. Natl. Acad. Sci. USA., 89, 2370–2373.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Miras-Portugal, M.T., Pintor, J., Castro, E., Rodriguez-Pascual, F., Torres, M. (1994). Diadenosine Polyphosphates from Neuro-Secretory Granules: The Search for Receptors, Signals and Function. In: Municio, A.M., Miras-Portugal, M.T. (eds) Cell Signal Transduction, Second Messengers, and Protein Phosphorylation in Health and Disease. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1879-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1879-2_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5765-0

  • Online ISBN: 978-1-4615-1879-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics