Skip to main content

Summary

The immunochemical localization of basic fibroblast growth factor was studied in ventricular ependyma of aged-matched normotensive and spontaneously hypertensive rats at different ages using a polyclonal antibody against bFGF. The basic fibroblast growth factor-like immunoreactivity was observed in brain ependyma of young and old normotensive rats. However, a progressive loss of immunoreactivity was observed with age in spontaneously hypertensive rats. These results show a new neuroendocrine anomaly to be added to the many others previously observed in the hypothalamo-neurohypophyseal system of this rat strain, when they develop hypertension as they get old.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A. Baird and P. Böhlen, Fibroblast growth factors, in “Peptide growth factors and their receptors”, M. B. Sporn and A. B. Roberts, eds, Springer, Berlin (1990).

    Google Scholar 

  2. F. Esch, A. Baird, N. Ling, N. Ueno, F, Hill, L. Denoroy, R. Klepper, D.Gospodarowicz, P. Bölen and R. Guillemin, Primary structure of bovine pituitary basic fibroblst growth factor (FGF) and comparison with the amino-terminal sequence of bovine brain acidic FGF, Proc. Natl. Acad. Sci. USA 82:6507 (1985).

    Article  PubMed  CAS  Google Scholar 

  3. G. Giménez-Gallego and P. Cuevas, Fibroblast growth factor, a protein with a broad spectrum of biological activities. Neurological Res. in press.

    Google Scholar 

  4. K. A. Thomas and G. Giménez-Gallego, Fibroblast growth factors: broad spectrum mitogens with potent angiogenic activity, Trends in Biol. Sci.11:1 (1986).

    Article  Google Scholar 

  5. P. Cuevas, F. Carceller, S. Ortega, M. Zazo, I. Nieto and G. Giménez-Gallego,Hypotensive activity of fibroblast growth factor, Science 254:1208 (1991).

    Article  PubMed  CAS  Google Scholar 

  6. P. Cuevas, G. Giménez-Gallego, R. Martínez-Murillo and F. Carceller, Immunohisto-chemical localization of basic fibroblast growth factor in ependymal cells of the rat lateral and third ventricles, Acta Anatom. 141:307 (1991).

    Article  CAS  Google Scholar 

  7. Y. Oomura K. Sasaki, K. Suzuki, T. Muto, A. Li, Z-I Ogita, K. Hanai, I. Tooyama, H.Kimura and N. Yanaihara, A new brain glucosensor and its physiological significance, Am. J. Clin. Nutr. 55:278S (1992).

    PubMed  CAS  Google Scholar 

  8. R. Avidor, R. Eilam, R. Malach and I. Gozes, VIP-mRNA is increased in hypertensive rats, Brain Res. 503:304 (1989).

    Article  PubMed  CAS  Google Scholar 

  9. R. E. Lang, W. Rascher, T. Unger and D. Ganten, Reduced content of vasopresin in the brain of spontaneously hypertensive as compared to normotensive rats, Neurosci. Lett. 23:199(1981).

    Article  PubMed  CAS  Google Scholar 

  10. M. Morris and M Keller, A specific deficiency in para ventricular vasopressin and oxytocin in the spontaneous hypertensive rat, Brain Res. 249:173 (1982).

    Article  PubMed  CAS  Google Scholar 

  11. A. Nagaoka and W Lovenberg, Regional changes in the activities of aminergic biosynthetic enzymes in the brain of hypertensive rats, Eur. J. Pharmacol. 43:297 (1977).

    Article  PubMed  CAS  Google Scholar 

  12. M. Morris, J. A. Wren, D. K. Sundberg, Central neural peptides and catecholamines in spontaneous and DOCA/salt hypertension, Peptides 2:207 (1981).

    Article  PubMed  CAS  Google Scholar 

  13. D. O. Nelson and J. A. Boulant, Altered CNS neuroanatomical organization of spontaneous hypertensive rats, Brain Res. 226:119 (1981).

    Article  PubMed  CAS  Google Scholar 

  14. T. L. Krukoff and M. A. Weigel, Metabolic alteration in discrete regions of the rat brain during development of spontaneous hypertension, Brain Res. 499:1 (1989).

    Article  PubMed  CAS  Google Scholar 

  15. K. J. Anderson, D. Dam, S. Lee, C. W. Cotman, Basic fibroblast growth factor prevents death of lesioned cholinergic neurons in vivo, Nature 332:360 (1988).

    Article  PubMed  CAS  Google Scholar 

  16. P. Cuevas, F. Carceller, A. Esteban, A. Baird and R. Guillemin, Basic fibroblast growth factor (bFGF) enhances retinal ganglion cell survival and promotes growth of rat transected optic nerve, Acta Nerol. Scand. 79:263 (1988).

    Article  Google Scholar 

  17. D. Otto, K. Unsicker and C. Grothe, Pharmacological effects of nerve growth factor and fibroblast growth factor applied to the transectioned sciatic nerve on neuron death in adult rat dorsal root ganglia, Neurosci. Lett. 83:156 (1987).

    Article  PubMed  CAS  Google Scholar 

  18. P. A. Walicke and A. Baird, Neurotrophic effects of basic and acidic fibroblast growth factors are not mediated through glial cells, Dev. Brain Res. 40:71 (1988).

    Article  CAS  Google Scholar 

  19. D. Blottner, R. Westermann, C. Grothe, P. Böhlen and P. Unsicker, Basic fibroblast growth factor in the adrenal gland: Possible trophic role for preganglionic neurons in vivo, Eur. J. Neurosci. 1:471 (1989).

    Article  PubMed  Google Scholar 

  20. Jan Klein. “Immunology. The science of self-nonsense discrimination”. John Wliley & Sons. New York, 1982.

    Google Scholar 

  21. O. E. Millhouse, A Golgi study of third ventricle tanycites in the adult rodent brain, Z.Zellforsch. Mikrosk. Anat. 121:1 (1971).

    Article  PubMed  CAS  Google Scholar 

  22. R. Bleier, The relations of ependyma to neurons and capillaries in the hypothalamus.A Golgi-Cox-study. J. Comp. Neurol. 142:439 (1971).

    Article  PubMed  CAS  Google Scholar 

  23. D. E. Scott, G. Krobisch-Dudley, K. M. Knigge, The ventricular system in neuroendocrine mechanisms-II. In vivo monoamine transport by ependyma of the median eminence, Cell Tissue Res. 154:1 (1974).

    Article  PubMed  CAS  Google Scholar 

  24. P. M. Ma, Tanycytes in the sunfish brain: NADH-diaphorase histochemistry and regional distribution, J. Comp. Neurol. 336:77 (1993).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cuevas, P., Reimers, D., Carceller, F., Xiaobing, F., Giménez-Gallego, G. (1994). Loss of Basic Fibroblast Growth Factor of Brain Ependyma in Old Spontaneously Hypertensive Rats. In: Municio, A.M., Miras-Portugal, M.T. (eds) Cell Signal Transduction, Second Messengers, and Protein Phosphorylation in Health and Disease. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1879-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1879-2_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5765-0

  • Online ISBN: 978-1-4615-1879-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics