A Program to Calculate Mixed Venous Oxygen Tension - a Guide to Transfusion?

  • N. Simon Faithfull
  • Glenn E. Rhoades
  • Peter E. Keipert
  • Andrew S. Ringle
  • Ad Trouwborst
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 361)

Abstract

Though it is generally accepted that venous blood oxygen tension (PO2) reflects (but does not measure) PO2 of the tissue from which it is issuing, it is generally impractical, except under unusual circumstances, to monitor PO2 in venous blood draining from individual tissues or organs. Hence, the mixed venous PO2 (PvO2) is usually taken as an acceptable estimator of the oxygen delivery/consumption ratio in the whole body and is used as a guide to the oxygenation status of the whole body. It would be logical therefore to use PvO2 as an indication for the need for blood transfusion during surgical procedures and in the trauma situation.

Keywords

Catheter Dioxide Ischemia Anemia Half Life 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    American College of Physicians, Practice Strategies for elective Red Blood Cell Transfusion, Annals of Internal Medicine 116.5 (1992): 403–406.Google Scholar
  2. 2.
    R. C. Fan, R. Y. Z. Chen, G. B. Schuessler, and S. Chien, Effects of hematocrit variations on regional hemodynamics and oxygen transport in the dog, Am J Physiol (1980): H545–H552.Google Scholar
  3. 3.
    P. G. Robertie, and G. P. Gravlee, Safe Limits of Isolvolemic Hemodilution and Recommendtions for Erythrocyte Transfusion, International Anesthesiology Clinics 28.4 (1990): 197–204.PubMedCrossRefGoogle Scholar
  4. 4.
    P. Lundsgaard-Hansen, Hemodilution - New Clothes for an Anemic Emperor, Vox. Sang. 36 (1979): 321–336.PubMedCrossRefGoogle Scholar
  5. 5.
    H. Hint, The pharmacology of dextran and the physiological background for the clinical use of Rheomacrodex and Macrodex, Acta Anaesthesiologica Belgica 2 (1968): 119–138.Google Scholar
  6. 6.
    H. Laks, R. N. Pilon, P. Klovekorn, W. Anderson, J. R. MacCallum, and N. E. O’Connor, Acute Hemodilution: Its effect on hemodynamics and oxygen transport in anesthetized man, Ann Surg 180.1 (1974): 103–109.PubMedCrossRefGoogle Scholar
  7. 7.
    D. M. Shah, M. N. Prichard, J. C. Newell, A. M. Karmody, W. A. Scovill, and S. R. Powers, Increased cardiac output and oxygen transport after intraoperative isovolemic hemodilution. A study in patients with peripheral vascular disease., Arch Surg 115 (1980): 597–600.CrossRefGoogle Scholar
  8. 8.
    K. Messmer, L. Sunder-Plassman, F. Jesch, L. Fornandt, E. Sinagowitz, M. Kessler, R. Pfeiffer, E. Horn, J. Hoper, and K. Joachimsmeier, Oxygen Supply to the Tissues during Limited Normovolemic Hemodilution, Res. Exp. Med. 159 (1973): 152–166.CrossRefGoogle Scholar
  9. 9.
    A. S. Geha, Coronary and cardiovascular dynamics and oxygen availability during acute normovolemic anemia, Surgery 80.1 (1976): 47–53.PubMedGoogle Scholar
  10. 10.
    R. Christopherson, S. Frank, E. Norris, P. Rock, S. Gottlieb, and C. Beattie, (Abstract) Low Postoperative Hematocrit is Associated with Cardiac Ischemia in High-Risk Patients, Anesthesiology 75.3A (1991): A99.CrossRefGoogle Scholar
  11. 11.
    W. Dick, C. Baur, and K. Reiff, Welche Faktoren bestimmen den Kritischen Hamatokrit bei der Indikationsstellung zur Transfusion?, Anaesthesist 41 (1992): 1–14.PubMedGoogle Scholar
  12. 12.
    H. R. Abel, T. B. Bradley Jr, and H. M. Ranney, “Pathophysiology of the hemoglobinopathies,” Clinical Obstetrics and Gynecology, Ed. W. L. Freedman Hoeber Medical Division, Harper and Row, 1969) 15–48.Google Scholar
  13. 13.
    A. C. Guyton, “Diffusion of oxygen from the capillaries to the interstitial fluid,” Textbook of Medical Physiology, Sixth ed. W. B. Saunders Company, 1981) 506.Google Scholar
  14. 14.
    G. Gutierrez, and J. M. Andry, Increased hemoglobin O2 affinity does not improve O2 consumption in hypoxemia, Journal of Applied Phusiologyl 66.2 (1989): 837–843.Google Scholar
  15. 15.
    S. M. Cain, Oxygen delivery and uptake in dogs during anemic and hypoxic hypoxia, (1977): 228–234.Google Scholar
  16. 16.
    J. V. Snyder, and M. R. Pinsky, Oxygen Transport in the Critically Ill, (Chicago, London: Year Book Medical Publishers, Inc., 1987) 554.Google Scholar
  17. 17.
    K. Shibutani, T. Komatsu, K. Kubal, V. Sanchala, V. Kumar, and D. V. Bizzarri, Critical level of oxygen delivery in anesthetized man, Crit Care Med 11.8 (1983): 640–643.PubMedCrossRefGoogle Scholar
  18. 18.
    Z. Mohsenifar, P. Goldbach, D. P. Tashkin, and D. J. Campisi, Relationship between O2 Delivery and O2 Consumption in the Adult Respiratory Distress Syndrome, CHEST 84.3 (1983): 267–271.PubMedCrossRefGoogle Scholar
  19. 19.
    G. R. Kelman, Digital computer subroutine for the conversion of oxygen tension into saturation, J Appl Physiol 21.4 (1966): 1375–1376.PubMedGoogle Scholar
  20. 20.
    J. W. Severinghaus, Blood gas calculator, J. Applied Physiology 21 (1966): 1108–1116.Google Scholar
  21. 21.
    A. Fick, Ueber die Messung des Blutquantums in den Hertzventrikelen, Würzburg, Physikalisch edizinische Gesellschaft Sitzungsbericht 16 (1870):Google Scholar
  22. 22.
    N. S. Faithfull, and S. M. Cain, Critical levels of O2 extraction following hemodilution with dextran or Fluosol-DA, J Crit Care 3 (1988): 14–18.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • N. Simon Faithfull
    • 1
  • Glenn E. Rhoades
    • 1
  • Peter E. Keipert
    • 1
  • Andrew S. Ringle
    • 2
  • Ad Trouwborst
    • 3
  1. 1.Alliance Pharmaceutical CorpUSA
  2. 2.Custom Micro DesignSan DiegoUSA
  3. 3.Dept of AnaesthesiologyAmsterdam Medical CenterThe Netherlands

Personalised recommendations