1H NMR Approach to Observe Tissue Oxygenation with the Signals of Myoglobin

  • Thomas Jue
  • Ulrike Kreutzer
  • Youngran Chung
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 361)


NMR has opened many new perspectives on metabolic regulation in vivo, with its non-invasive application as a key feature. It can localize metabolite signals from specific tissue and reveal their fluctuation under different physiological conditions, even in humans. The signals of phosphocreatine, inorganic phosphate, ATP, and lactate have helped to detail the cellular response and to illuminate the metabolic regulation (Brown et al, 1982, Koretsky and Williams, 1992).


Intracellular Oxygen Cerebral Oxygen Consumption Iron Oxygen National Biomedical Research Foundation Ring Current Shift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antonini, E., and Brunori, M., 1971, “Hemoglobin and Myoglobin in their Reactions with Ligands,” North Holland, Amsterdam.Google Scholar
  2. Brown, T. R., Kincaid, M., and Ugurbil, K, 1982, NMR chemical shift imaging in three dimensions, Proc. Natl. Acad. Sci. USA.. 79: 523.Google Scholar
  3. Busse, S and Jue, T., manuscript in preparation.Google Scholar
  4. Dayhoff, M. O. and Eck, R. V., 1968, “Atlas of Protein Sequence and Structure,” National Biomedical Research Foundation, Silver Spring.Google Scholar
  5. Fiat, D. and Kang, S., 1993, Determination of the rate of cerebral oxygen consumption and regional cerebral blood flow by non-invasive 17O in vivo nmr spectroscopy and magnetic resonance imaging. part 2. determination of CMRO2 for the rat by 17O NMR, and CMRO2, rcbf and the partition coefficient for the cat by 17O NMI, Neurological Research. 15: 7.PubMedGoogle Scholar
  6. Goff, H. and La Mar, G. N., 1977, Spin ferrous porphyrin complexes as models for deoxymyoglobin and -hemoglobin. a proton nuclear magnetic resonance study, J. Am. Chem. Soc. 99: 6599.PubMedCrossRefGoogle Scholar
  7. Ho, C. and Russu, I., 1981, Proton nuclear magnetic resonance investigation of hemoglobins, in: “Methods in Enzymology,” E. Antonini, L. Rossi-Bernardi, and E. Chiancone, eds, vol.76, Academic Press, New York.Google Scholar
  8. Holland S. K., Kennan R. P., Schaub M. M., D’Angelo M. J., Gore, J. C., 1993, Imaging oxygen tension in liver and spleen by 19F NMR, Magn. Reson. Med. 29:446.PubMedCrossRefGoogle Scholar
  9. Horrocks, J. DeW., 1973, Analysis of isotropic shifts, in: “NMR of Paramagnetic Molecules,” G. N. La Mar, J, DeW. Horrocks, and R. H. Holm, eds, Academic Press, New York.Google Scholar
  10. Jesson, J. P., 1973, The paramagnetic shift, in: “NMR of Paramagnetic Molecules,” G. N. La Mar, J, DeW. Horrocks, and R. H. Holm, eds, Academic Press, New York.Google Scholar
  11. Jue, T. and S. Anderson, 1990, 1H observation of tissue myoglobin: An indicator of intracellular oxygenation in vivo, Magn. Res. Med. 13:524.CrossRefGoogle Scholar
  12. Kendrew, J. C., Watson, H.C., Strandberg, B. E., Dickerson, R. E., Phillips, D. C., and Shore, V. C., 1961, A partial determination by x-ray methods, and its correlation with chemical data, Nature (London). 190:666.CrossRefGoogle Scholar
  13. Koretsky, A. P. and Williams, D. S., 1992, Application of localized in vivo nmr to whole organ physiology in animal, Ann. Rev. Physiol. 54:799.CrossRefGoogle Scholar
  14. Kreutzer, U. and Jue, T., 1991 1H nuclear magnetic resonance deoxymyoglobin signal as indicator of intracellular oxygenation in myocardium, Am. J. Physiol. 30:H2091.Google Scholar
  15. Kreutzer, U., Wang, D. S., and Jue, T., 1992, Observing the 1H NMR signal of the myoglobin val El 1 in myocardium: an index of cellular oxygenation, Proc. Natl. Acad Sci., USA. 89:4731.PubMedCrossRefGoogle Scholar
  16. Kreutzer, U., Chung, Y., Butler, D. and Jue, T., 1993, 1H NMR characterization of the human myocardium myoglobin and erythrocyte hemoglobin signals, Bioch. Biophys. Acta. 161:33.Google Scholar
  17. Kreutzer, U. and Jue, T., manuscript in preparation.Google Scholar
  18. La Mar, G.N., 1979,. Model compounds as aids in interpreting NMR spectra of hemoproteins, in: “Biological Applications of Magnetic Resonance,” R G Shulman, ed., Academic Press, New York.Google Scholar
  19. Livingston, D. J., La Mar, G. N. and Brown, W.D., 1983, Myoglobin diffusion in bovine heart muscle, Science. 220:71.PubMedCrossRefGoogle Scholar
  20. McGovern, K. A., Schoeniger, J. S., Wehrle, J. P., Ng, C. E., Glickson, J. D., 1993, Gel-entrapment of perfluorocarbons: a fluorine-19 NMR spectroscopic method for monitoring oxygen concentration in cell perfusion systems, Magn. Reson. Med. 29:196.PubMedCrossRefGoogle Scholar
  21. Pekar, J., Ligeti, L., Ruttner, Z., Lyon, R. C., Sinnwell, T. M., van Gelderen, P., Fiat, D., Moonen, C. T., McLaughlin, A. C., 1991, In vivo measurement of cerebral oxygen consumption and blood flow using 170 magnetic resonance imaging, Magn. Reson.Med. 21:313.PubMedCrossRefGoogle Scholar
  22. Perkins, S. J., 1980, Ring current models for the heme ring in cytochrome c, J. Magn. Reson. 38:297.Google Scholar
  23. Shin, H. C., Merutka, G., Waltho, J. P., Wright, P. E., Dyson, H. J., 1993, Peptide models of protein folding initiation sites.2. the G-H turn region of myoglobin acts as a helix stop signal, Biochemistry. 32:6348.PubMedCrossRefGoogle Scholar
  24. Shulman, R. G., Wuthrich, K., Yamane, T., Patel, D. J., and Blumberg, W. E., 1970, Nuclear magnetic resonance determination of ligand-induced conformational changes in myoglobin, I Mol. Biol. 53:143.CrossRefGoogle Scholar
  25. Wang, D. S., Kreutzer, U., and Jue, T., 1991, Separating the intracellular signals of myoglobin and hemoglobin, Proc. Soc. Magn. Reson. Med. 301.Google Scholar
  26. Weissbluth, M., 1974, Hemoglobin. cooperativity and electronic properties, in: “Mol. Biol. Biochem. Biophys.,” Vol. 15, Springer Verlag, New York.Google Scholar
  27. Wittenberg, J. B., 1970, Myoglobin-Facilitated oxygen diffusion: role of myoglobin in oxygen entry into muscle, Phys. Rev. 50:559.Google Scholar
  28. Wittenberg, B. A. and Wittenberg, J. B., 1985, Oxygen pressure gradients in isolated cardiac myocytes, J. Biol. Chem. 260: 6548.PubMedGoogle Scholar
  29. Wittenberg, B. A. and Wittenberg, J. B., 1989, Transport of oxygen in muscle, Ann. Rev. Physiol. 51:857.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Thomas Jue
    • 1
  • Ulrike Kreutzer
    • 1
  • Youngran Chung
    • 1
  1. 1.Biological Chemistry DepartmentUniversity of California DavisDavisUSA

Personalised recommendations