Surface Brillouin Scattering—Extending Surface Wave Measurements to 20 GHz

  • P. Mutti
  • C. E. Bottani
  • G. Ghislotti
  • M. Beghi
  • G. A. D. Briggs
  • J. R. Sandercock
Part of the Advances in Acoustic Microscopy book series (AAMI, volume 1)

Abstract

Brillouin light scattering is generally referred to as the inelastic scattering of an incident optical wave field by thermally excited elastic waves (elastic waves of thermal origin are usually called acoustic phonons) in a sample. This subject was first investigated early in the century by Brillouin(1) and Mandelshtam(2) in the case of scattering from transparent materials. Since the advent of the laser as a powerful source of monochromatic light, Brillouin scattering has received considerable interest for characterizing elastic and optoelastic bulk properties of materials.3,4 More recently with the introduction of high-contrast spectrometers,(5) scattering from opaque materials can be studied, thereby permitting considerable advances in the study of surface acoustic waves in solids. In the last decade, Brillouin scattering from surfaces, more often called surface Brillouin scattering (SBS), has been widely used to investigate elastic properties of thin films, interfaces, and layered materials.

Keywords

Nickel Anisotropy Attenuation GaAs Molybdenum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brillouin, L. (1922). Propagation of light in a dispersive medium. Ann. Phys. 17, 88–96.Google Scholar
  2. 2.
    Mandelshtam, L. J. (1926). Thermal scattering by crystals. Zh. Russ. Fiz. Khim. Ova. 58, 381–394.Google Scholar
  3. 3.
    Benedek, G. B. and Fritsch, K. (1966). Brillouin scattering in crystals. Phys. Rev. 149, 647–662.CrossRefGoogle Scholar
  4. 4.
    Vacher, R. and Boyer, L. (1972). Brillouin scattering: a tool for the measurement of elastic and photoelastic constants. Phys. Rev. B 6, 639–673.CrossRefGoogle Scholar
  5. 5.
    Sandercock, J. R. (1982). In: Light Scattering in Solids III, Topics in Applied Physics vol. 51 (M. Cardona and G. Güntherodt, eds.), pp. 173–206. Springer, Berlin.CrossRefGoogle Scholar
  6. 6.
    Born, M. and Wolf, E. (1964). Principles of Optics, Pergamon, Oxford, UK, pp. 100–104.Google Scholar
  7. 7.
    Landau, L. and Lifshitz, E. M. (1958). Electrodynamics of Continuous Media, Pergamon, New York, chap. 14.Google Scholar
  8. 8.
    Mills, D. L., Maradudin, A. A., Burnstein, E. (1970). Theory of Raman effect in metals. Ann. Phys. 56, 504–524.CrossRefGoogle Scholar
  9. 9.
    Loudon, R. (1978). Theory of lineshapes for normal incidence Brillouin scattering by acoustic phonons. Phys. Rev. Lett. 40, 581–583.CrossRefGoogle Scholar
  10. 10.
    Loudon, R. (1978). Theory of surface ripple Brillouin scattering by solids. J. Phys. C. 11, 403–417.CrossRefGoogle Scholar
  11. 11.
    Subbaswamy, K. R. and Maradudin, A. A. (1978). Theory of inelastic light scattering by acoustic phonons in an opaque crystal. Phys. Rev. B 18, 4181–99.CrossRefGoogle Scholar
  12. 12.
    Rowell, N. L. and Stegeman, G. I. (1978). Brillouin scattering from isotropic metals. Phys. Rev. Lett. 41, 970–73.CrossRefGoogle Scholar
  13. 13.
    Rowell, N. L. and Stegeman, G. I. (1978). Brillouin scattering from surface phonons in thin films. Phys. Rev. B 18, 2598–2615.CrossRefGoogle Scholar
  14. 14.
    Marvin, A. M., Bortolani, V., Nizzoli, F. (1980). Surface Brillouin scattering from acoustic phonons: I. General theory. J. Phys. C 13, 299–317.CrossRefGoogle Scholar
  15. 15.
    Marvin, A. M., Bortolani, V., Nizzoli, F., and Santoro, G. (1980). Surface Brillouin scattering from acoustic phonons: Applications to semiconductors. J. Phys. C 13, 1607.CrossRefGoogle Scholar
  16. 16.
    Velasco, V. R. and Garcia-Moliner, F. (1980). Brillouin scattering from surface waves. Sol. St. Comm. 33, 1–5.CrossRefGoogle Scholar
  17. 17.
    Dervisch, A. and Loudon, R. (1976). Theory of the Brillouin scattering lineshape in an opaque material. J. Phys. C 9, L669–L673.CrossRefGoogle Scholar
  18. 18.
    Auld, B. A. (1973). Acoustic Waves and Fields in Solids, vols. 1 & 2, Wiley, New York.Google Scholar
  19. 19.
    Farnell, G. W. (1970). In: Physical Acoustics, vol. 6 (W. P. Mason and R. W. Thurston, eds.), pp. 109–160. Academic Press, New York.Google Scholar
  20. 20.
    Bortolani, V., Nizzoli, F., Santoro, G. (1978). Surface density of acoustic phonons in GaAs. Phys. Rev. Lett. 41, 39–42.CrossRefGoogle Scholar
  21. 21.
    Glass, N. E. and Maradudin, A. A. (1983). Leaky surface elastic waves on both flat and strongly corrugated surfaces for isotropic, nondissipative media. J. Appl. Phys. 54, 796–805.CrossRefGoogle Scholar
  22. 22.
    Camley, R. E. and Nizzoli, F. (1985). Longitudinal resonance in surface acoustic phonons. J. Phys. C 18, 4795–4804.CrossRefGoogle Scholar
  23. 23.
    Marvin, A. M., Toigo, F., Celli, V. (1975). Light scattering from rough surfaces: general incident angle and polarization. Phys. Rev. B 11, 1392–1415.CrossRefGoogle Scholar
  24. 24.
    Albuquerque, E. L. (1980). Theory of Brillouin scattering by Stoneley waves. J. Phys. C 13, 2623–39.CrossRefGoogle Scholar
  25. 25.
    Albuquerque, E. L., Loudon, R., Tilley, D. R. (1980). Theory of Brillouin scattering by Love waves. J. Phys. C 13, 1775–89.CrossRefGoogle Scholar
  26. 26.
    Marvin, A. M., Bortolani, V., Nizzoli, F., Santoro, G., Celli, V. (1982). Theory of the three wave mixing of volume EM, surface polaritons and surface acoustic waves. J. Phys. C 15, 3273–80.CrossRefGoogle Scholar
  27. 27.
    Bortolani, V., Marvin, A. M., Nizzoli, F., Santoro, G. (1983). Theory of Brillouin scattering from surface acoustic phonons in supported films. J. Phys. C 16, 219–30.CrossRefGoogle Scholar
  28. 28.
    Albuquerque, E. L., Oliveros, M. C., Tilley, D. R. (1984). Brillouin scattering from an elastic film. J. Phys. C 17, 1451–63.CrossRefGoogle Scholar
  29. 29.
    Farnell, G. W. and Adler, E. L. (1972). In: Physical Acoustics, vol. 9 (W. P. Mason and R. W. Thurston, eds.), pp. 35–121. Academic Press, New York.Google Scholar
  30. 30.
    Rowell, N. L. and Stegeman, G. I. (1982). Brillouin scattering in thin film optical waveguides: I. Theory of the phonon modes. Can J. Phys. 60, 1788–1803.CrossRefGoogle Scholar
  31. 31.
    Rowell, N. L. and Stegeman, G. I. (1982). Brillouin scattering in thin film optical waveguides: II. Scattering theory. Can. J. Phys. 60, 1804–20.CrossRefGoogle Scholar
  32. 32.
    Vaughan, J. M. (1989). The Fabry-Perot interferometer, Adam Hilger, Bristol U, UK.Google Scholar
  33. 33.
    Gustaffson, S. E., Khan, M. N., van Eijk, J. (1979). Wavelength scanning and mirror alignment of a new multipass Fabry-Perot interferometer. J. Phys. E 12, 1100–02.CrossRefGoogle Scholar
  34. 34.
    Sandercock, J. R. (1976). Simple stabilization scheme for maintenance of mirror alignment in a scanning Fabry-Perot interferometer. J. Phys. E. 9, 566–69.CrossRefGoogle Scholar
  35. 35.
    Sandercock, J. R. (1971). “The design and use of a stabilized multipass interferometer of high contrast ratio.” In: Proc. 2nd international conference on light scattering in solids (M. Balkanski, ed.), pp. 6–12. Flammarion, Paris.Google Scholar
  36. 36.
    Roychoudhury, C. and Hercher, M. (1977). Stable multipass Fabry-Perot interferometer: design and analysis. Appl. Opt. 16, 2514–20.CrossRefGoogle Scholar
  37. 37.
    Lindsay, S. M., Anderson, M. W., Sandercock, J. R. (1981). Construction and alignment of a high performance multipass vernier Fabry -Perot interferometer. Rev. Sci. Instr. 52, 1478–89.CrossRefGoogle Scholar
  38. 38.
    Mock, R., Hillebrands, B., Sandercock, J. R. (1987). Construction and performance of a Brillouin scattering set up using a triple pass tandem Fabry -Perot interferometer. J. Phys. E 20, 656–59.CrossRefGoogle Scholar
  39. 39.
    Cannell, D. S. and Benedek, G. B. (1970). Brillouin scattering from xenon near its critical point. Phys. Rev. Lett. 25, 1157–1161.CrossRefGoogle Scholar
  40. 40.
    Dil, J. G. and Brody, E. M. (1976). Brillouin scattering from isotropic metals. Phys. Rev. B 14, 5218–27.CrossRefGoogle Scholar
  41. 41.
    Sandercock, J. R. (1980). US Patent 4 225–236.Google Scholar
  42. 42.
    Briggs, G. A. D. (1993). Acoustic Microscopy, Clarendon Press, Oxford, UK.Google Scholar
  43. 43.
    Loudon, R. and Sandercock, J. R. (1980). Analysis of the light scattering cross section for surface ripples on solids. J. Phys. C. 13, 2609–22.CrossRefGoogle Scholar
  44. 44.
    Carlotti, G., Fioretto, D., Giovannini, L., Nizzoli, F., Socino, G., Verdini, L. (1992). Brillouin scattering by pseudosurface acoustic modes in (1ī1) GaAs. J. Phys. Cond. 4, 257–62.CrossRefGoogle Scholar
  45. 45.
    Muni, P. (1993). Surface Acoustic Waves for Semiconductor Characterization. D. Phil. Thesis, Oxford University.Google Scholar
  46. 46.
    Giintherodt, G., Blumenroder, S., Hillebrands, B., Mock, R., Zirngrieb, E. (1985). Light scattering in metallic compounds and thin supported layers. Z. Phys. B 60, 423–32.CrossRefGoogle Scholar
  47. 47.
    Sandercock, J. R. (1978). Light scattering from surface acoustic phonons in metals and semiconductors. Sol. St. Comm. 26, 543–51.Google Scholar
  48. 48.
    Bassoli, L., Nizzoli, F., Sandercock, J. R. (1986). Surface Brillouin scattering from polycrystalline gold. Phys. Rev. B 34, 1296–99.CrossRefGoogle Scholar
  49. 49.
    Lim, T. C. and Farnell, G. W. (1968). Elastic surface wave propagation in crystals. J. Appl. Phys. 39, 4319–21.CrossRefGoogle Scholar
  50. 50.
    Lim, T. C. and Farrell, G. W. (1969). Character of pseudo surface waves in anisotropic crystals. J. Acoust. Soc. Am. 4, 845–48.CrossRefGoogle Scholar
  51. 51.
    Dutcher, J. R., Lee, S., Hillebrands, B., McLaughlin, G. J., Nickel, B. G., Stegeman, G. I. (1992). Surface-grating-induced zone folding and hybridization of surface acoustic modes. Phys. Rev. Lett. 68, 2464–66.PubMedCrossRefGoogle Scholar
  52. 52.
    Giovannini, L., Nizzoli, F., Marvin, A. M. (1992). Theory of surface acoustic phonon normal modes and light scattering cross section in a periodically corrugated surface. Phys. Rev. Lett. 69, 1572–78.PubMedCrossRefGoogle Scholar
  53. 53.
    Bortolani, V., Nizzoli, F., Santoro, G., Sandercock, J. R. (1982). Strong interference effects in surface Brillouin scattering from a supported transparent film. Phys. Rev. B 25, 3442–45.CrossRefGoogle Scholar
  54. 54.
    Karanikas, J. M., Sooryakumarand, R., Phillips, J. M. (1989). Brillouin cross section and localized phonons in CaF2/Si heterostructures. Phys. Rev. B 39, 1388–91.CrossRefGoogle Scholar
  55. 55.
    Bortolani, V., Nizzoli, F., Santoro, G., Marvin, A., Sandercock, J. R. (1979). Brillouin scattering from surface phonons in Al-coated semiconductors. Phys. Rev. Lett. 43, 224–26.CrossRefGoogle Scholar
  56. 56.
    Jorna, R., Visser, D., Bortolani, V., Nizzoli, F. (1989). Elastic and vibrational properties of nickel films measured by surface Brillouin scattering. J. Appl. Phys. 65, 718–825.CrossRefGoogle Scholar
  57. 57.
    Bell, J. A., Zanoni, R. J., Seaton, C. T., Stegeman, G. I., Mokous, J., Falco, C. M. (1988). Elastic constants of, and Stoneley waves in molybdenum films measured by Brillouin scattering. Appl. Phys. Lett. 52, 610–12.CrossRefGoogle Scholar
  58. 58.
    Bell, J. A., Zanoni, R. J., Seaton, C. T., Stegeman, G. I., Bennet, W. R., Falco, C. M. (1987). Brillouin scattering from Love waves in Cu/Nb metallic superlattices. Appl. Phys. Lett. 51, 652–54.CrossRefGoogle Scholar
  59. 59.
    Bottani, C. E., Ghislotti, G., Mutti, P. (1994). Brillouin scattering from surface horizontal surface phonons in buried Si02 layers. J. Phys. Cond. 6, L85.CrossRefGoogle Scholar
  60. 60.
    Hillebrands, B., Lee, S., Stegeman, G. I., Cheng, H., Potts, J. E., Nizzoli, F. (1988). Evidence for the existence of guided longitudinal acoustic phonons in ZnSe films on GaAs. Phys. Rev. Lett. 60, 832–35.PubMedCrossRefGoogle Scholar
  61. 61.
    Hillebrands, B., Mock, R., Giintherodt, G., Bechthold, P. S., Herres, N. (1986). Dispersion of localized elastic modes in thin supported gold layers measured by Brillouin scattering. Solid State Comm. 60, 649–52.CrossRefGoogle Scholar
  62. 62.
    Aleksandrov, V., Bottani, C. E., Caglioti, G., Ghislotti, G., Marinoni, C., Mutti, P., Yakovlev, N. L., Sokolof, N. S. (1994). Experimental evidence of the transformation of the Rayleigh surface phonon in GaAs(01) heterostructures of the accelerating type. J. Phys. Cond. 6, 1947–54.CrossRefGoogle Scholar
  63. 63.
    Baumgart, P., Blumenroder, S., Erl, A., Hillebrands, B., Giintherodt, G., Schmidt, H. (1989). Sound velocities of YBa2Cu307–8 single crystals measured by Brillouin spectroscopy. Sol. St. Comm. 69, 1135–37.CrossRefGoogle Scholar
  64. 64.
    Baumgart, P., Blumenroder, S., Erle, A., Hillebrands, B., Splittgerber, P., Gtintherodt, G., Schmidt, H. (1989). Sound velocities of YBa2Cu3O7–8 and Bi2Sr2CaCu2Ox single crystals measured by Brillouin spectroscopy. Physica C 171, 173–82.Google Scholar
  65. 65.
    Boekholt, M., Harzer, J. V., Hillebrands, B., Guntherodt, G. (1991). Determination of the sound velocities and the complete set of elastic constants of Bi2Sr2CaCu2O8+δ single crystals using Brillouin light scattering. Physica C 179, 101–106.CrossRefGoogle Scholar
  66. 66.
    Nizzoli, F., Bhadra, R., de Lima, O. F., Brodsky, M. B., Grimsditch, M. (1988). Problems with the determination of elastic constants from higher order surface waves: results for Al on NaCI. Phys. Rev. B 37, 1007–10.CrossRefGoogle Scholar
  67. 67.
    Bottani, C. E., Elena, M., Beghi, M., Ghislotti, G., Guzman, L., Miotello, A., Ossi, P. M. (1993). Elastic properties of thin TiN films. Mat. Res. Soc. Symp. Proc. 308, 95–100.CrossRefGoogle Scholar
  68. 68.
    Zanoni, R., Naselli, C., Bell, J. A., Stegeman, G. I., Seaton, C. T. (1986). Brillouin spectroscopy of Langmuir-Blodgett films. Phys. Rev. Lett. 57, 2838–40.PubMedCrossRefGoogle Scholar
  69. 69.
    Nizzoli, F., Hillebrands, B., Lee, S., Stegeman, G. I., Duda, G., Werner, G., Knoll, W. (1989). Determination of the whole set of elastic constants of a polimeric Langmuir-Blodgett films by Brillouin spectroscopy. Phys. Rev. B 40, 3323–28.CrossRefGoogle Scholar
  70. 70.
    Kueny, A., Grimsditch, M., Miyano, K., Banerjee, I., Falco, C. M., Schuller, I. K. (1982). Anomalous behaviour of surface acoustic waves in Cu/Nb superlattices. Phys. Rev. Lett. 48, 166–69.CrossRefGoogle Scholar
  71. 71.
    Schuller, I. K. and Grimsditch, M. (1986). Effect of strain on the elastic properties of superlattices. J. Vac. Sci. and Technol. B 4, 1444–46.CrossRefGoogle Scholar
  72. 72.
    Bell, J. A., Bennet, W. R., Zanoni, R., Stegeman, G. I., Falco, C. M., Seaton, C. T. (1987). Elastic constants of Cu/Nb superlattices. Sol. St. Commun. 64, 1339–42.CrossRefGoogle Scholar
  73. 73.
    Khan, M. R., Chun, C. S. L., Felcher, P., Grimsditch, M., Kueny, A., Falco, C. M., Schuller, I. K. (1983). Structural, elastic and transport anomalies in molybdenum/nickel superlattices. Phys. Rev. B 27, 7186–93.CrossRefGoogle Scholar
  74. 74.
    Danner, R., Huebener, R. P., Chun, C. S. L., Grimsditch, M., Schuller, I. K. (1986). Surface acoustic waves in Ni/V superlattices. Phys. Rev. B 33, 3696–3701.CrossRefGoogle Scholar
  75. 75.
    Bell, J. A., Bennet, W. R., Zanoni, R., Stegeman, G. I., Falco, C. M., Nizzoli, F. (1987). Elastic constants of Mo/Ta superlattices measured by Brillouin scattering. Phys. Rev. B 343, 9004–07.Google Scholar
  76. 76.
    Bisanti, P., Brodsky, M. B., Felcher, G. P., Grimsditch, M., Sill, L. R. (1987). Surface waves in Au/Cr superlattices. Phys. Rev. B 35, 7813–19.CrossRefGoogle Scholar
  77. 77.
    Moreau, A., Ketterson, J. B., Davis, B. M. (1990). A new ultrasonic method for measuring elastic moduli in unsupported films: application to Cu/Pd superlattices. J. Appl. Phys. 68, 1622–1627.CrossRefGoogle Scholar
  78. 78.
    Huberman, M. L., and Grimsditch, M. (1989). Lattice expansion and contraction in metallic superlattices. Phys. Rev. Lett. 62, 1403–06.PubMedCrossRefGoogle Scholar
  79. 79.
    Cammarata, R. C. (1986). The supermodulus effect in compositionally modulated superlattices. Scr. Metall. 20, 479–81.CrossRefGoogle Scholar
  80. 80.
    Wolf, D. and Lutsko, J. F. (1988). Structurally induced supermodulus effect in superlattices. Phys. Rev. Lett. 60, 1170–73.PubMedCrossRefGoogle Scholar
  81. 81.
    Hillebrands, B., Krams, P., Sporl, K., Weller, D. (1991). Influence of the interference quality on the elastic properties of Co/Au multilayers investigated by Brillouin scattering. J. Appl. Phys. 69, 938–42.CrossRefGoogle Scholar
  82. 82.
    Carlotti, G., Fioretto, D., Socino, G., Rodmacq, B., Pelosin, V. (1992). Interface effects and elastic constants of Ag/Ni superlattices studied by Brillouin scattering. J. Appl. Phys. 71, 4897–902.CrossRefGoogle Scholar
  83. 83.
    Mendik, M., Sathish, S., Kulik, A., Gremaud, G., Wacther, P. (1992). Surface acoustic wave studies on single crystal nickel using Brillouin scattering and scanning acoustic microscopy. J. Appl. Phys. 71, 2830–34.CrossRefGoogle Scholar
  84. 84.
    Eguiluz, E. G. and Maradudin, A. A. (1983). Frequency shift and attenuation length of Rayleigh wave due to surface roughness. Phys. Rev. B 28, 728–747.CrossRefGoogle Scholar
  85. 85.
    Rehn, L. R., Okamoto, P., Pearson, J., Bhadra, R., Grimsditch, M. (1987). Solid-state amorphization of Zr3A1: evidence of an elastic instability and first order transformation. Phys. Rev. Lett. 59, 2987–90.PubMedCrossRefGoogle Scholar
  86. 86.
    Grimsditch, M., Gray, K. E., Bhadra, R., Kampwirth, R. T., Rehn, L. R. (1987). Brillouin scattering study of lattice-stiffness changes due to ion irradiation: dramatic softening in Nb3Ir. Phys. Rev. B 35, 883–85.CrossRefGoogle Scholar
  87. 87.
    Okamoto, P., Rehn, L. R., Pearson, J., Bhadra, R., Grimsditch, M. (1988). Brillouin scattering and transmission electron microscopy studies of radiation-induced elastic softening, disordering and amorphization of intermetallic compounds. J. Less Common Met. 140, 231–44.CrossRefGoogle Scholar
  88. 88.
    Koike, J. (1993). Elastic instability of crystals caused by static atom displacement: a mechanism for solid state amorphization. Phys. Rev. B 47, 7700–04.CrossRefGoogle Scholar
  89. 89.
    Bhadra, R., Pearson, J., Okamoto, P., Rehn, L. R., Grimsditch, M. (1988). Elastic properties of Si during amorphization. Phys. Rev. B 38, 12656–60.CrossRefGoogle Scholar
  90. 90.
    Sharma, R. P., Bhadra, R., Rehn, L. E., Baldo, P. M., Grimsditch, M. (1989). Crystalline to amorphous transformation in GaAs during Kr ion bombardment: a study of elastic behavior. J. Appl. Phys. 66, 152–55.CrossRefGoogle Scholar
  91. 91.
    Cerofolini, G. F., Bertoni, S., Fumagalli, P., Meda, L., Spaggiari, C. (1993). SiO2 precipitation in highly supersaturated oxygen implanted single-crystal silicon. Phys. Rev. B 47, 1174–82.CrossRefGoogle Scholar
  92. 92.
    Elliott, R. J., Krumhansl, J. A., Leath, P. L. (1974). The theory and properties of randomly disordered crystals and related physical systems. Rev. Mod. Phys. 46, 465–543.CrossRefGoogle Scholar
  93. 93.
    Eshelby, J. D. (1959). The elastic field outside an ellipsoidal inclusion. Proc. R. Soc. A 252, 561–80.CrossRefGoogle Scholar
  94. 94.
    Nizzoli, F. and Mills, D. L. (1991). In: Nonlinear Surface Electromagnetic Phenomena (H.-E. Ponath and G. I. Stegeman, eds.), Chap. 7, North Holland, Amsterdam.Google Scholar
  95. 95.
    Cummins, H. Z. (1983). In: Light Scattering Near Phase Transitions (H. Z. Cummins and A. P. Levanyuk, eds.), pp. 1031–65, North Holland, Amsterdam.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • P. Mutti
    • 1
    • 2
  • C. E. Bottani
    • 2
    • 3
  • G. Ghislotti
    • 2
  • M. Beghi
    • 2
    • 3
  • G. A. D. Briggs
    • 1
    • 2
  • J. R. Sandercock
    • 4
  1. 1.Department of MaterialsUniversity of OxfordOxfordEngland
  2. 2.Dipartimento di Ignegneria NuclearePolitecnico di MilanoMilanoItaly
  3. 3.Consorzio Interuniversitario Nazionale per la Fisica della MateriaUnitá di Ricerca Milano PolitecnicoMilanoItaly
  4. 4.JRSZurichSwitzerland

Personalised recommendations