Non-Mammalian Vertebrate Pepsinogens and Pepsins: Isolation and Characterization

  • Kenji Takahashi
  • Masao Tanji
  • Etsuko Yakabe
  • Akira Hirasawa
  • Senerath B. P. Athauda
  • Takashi Kageyama
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 362)

Abstract

Pepsinogen, the precursor of pepsin, is secreted from the gastric mucosa into the gastric lumen, where it is autocatalytically activated to pepsin under acidic conditions. It is classified into three major types, that is, pepsinogen A, pepsinogen C (or progastricsin), and prochymosin (or neonatal pepsinogen). Further, pepsinogens, especially pepsinogens A, are often composed of several isozymogens. So far, a number of pepsinogens were purified from various sources, characterized and sequenced at the protein level and/or DNA level. Thus the complete amino acid sequences of mammalian pepsinogens are known for human (1), monkey (2), porcine (3–6), and rabbit (7) pepsinogens A, human (8), monkey (9), rat (10) and guinea pig (11) pepsinogens C, and bovine prochymosin (12).

Keywords

Cellulose Filtration Carbohydrate Propane Fractionation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Sogawa, Y. Fujii-Kuriyama, Y. Mizukami, Y. Ichihara and K. Takahashi, Primary Structure of Human Pepsinogen Gene, J. Biol. Chem. 258: 5306–5311 (1983).PubMedGoogle Scholar
  2. 2.
    T. Kageyama and K. Takahashi, The Complete Amino Acid Sequence of Monkey Pepsinogen A, J. Biol Chem. 261: 4395–4405 (1986).PubMedGoogle Scholar
  3. 3.
    J. Tang, P. Sepulveda, J. Marciniszyn Jr., K. C. S. Chen, W-Y. Huang, N. Tao, D. Liu and J. P. Lanier, Amino-Acid Sequence of Porcine Pepsin, Proc. Natl. Acad. Sci U. S. A. 70: 3437–3439 (1973).PubMedCrossRefGoogle Scholar
  4. 4.
    E. B. Ong and G. E. Perlmann, The Amino-Terminal Sequence of Porcine Pepsinogen, J. Biol. Chem. 243:6104–6109 (1968).PubMedGoogle Scholar
  5. 5.
    V. B. Pederson and B. Foltmann, The Amino Acid Sequence of A Hitherto Unobserved Segment from Porcine Pepsinogen Preceding the N-Terminus of Pepsin, FEBS Lett. 35: 255–256 (1973).CrossRefGoogle Scholar
  6. 6.
    V. M. Stepanov, L. A. Baratova, I. B. Pugacheva, L. P. Belyanova, L. P. Revina and E. A. Timokhina, N-Terminal Sequence of Swine Pepsinogen and Pepsin. The Site of Pepsinogn Activation, Biochem. Biophys. Res. Commun. 54: 1164–1170 (1973).PubMedCrossRefGoogle Scholar
  7. 7.
    T. Kageyama, K. Tanabe and O. Koiwai, Structure and Development of Rabbit Pepsinogens. Stage-Specific Zymogens, Nucleotide Sequence of cDNAs, Molecular Evolution, and Gene Expression during Development, J. Biol. Chem. 265: 17031–17038 (1990).PubMedGoogle Scholar
  8. 8.
    T. Hayano, K. Sogawa, Y. Ichihara, Y. Fujii-Kuriyama and K. Takahashi, Primary Structure of Human Pepsinogen C Gene, J. Biol. Chem. 263: 1382–1385 (1988).PubMedGoogle Scholar
  9. 9.
    T. Kageyama and K. Takahashi, The Complete Amino Acid Sequence of Monkey Progastricsin, J. Biol. Chem. 261: 4406–4419 (1986).PubMedGoogle Scholar
  10. 10.
    T. Ishihara, Y. Ichihara, T. Hayano. I. Katsura, K. Sogwa, Y Fujii-Kuriyama and K. Takahashi, Primary Strucutre and Transcriptional Regulation of Rat Pepsinogen C. Gene, J. Biol. Chem. 264: 10193–10199(1989).Google Scholar
  11. 11.
    T. Kageyama. M. Ichinose, S. Tsukada, K. Miki, K. Kurokawa, O. Koiwai, M. Tanji, E. Yakabe, S. B. P. Athauda and K. Takahashi, Gastric Prochathepsin E and Progastricsin from Guinea Pig. Purification, Molecular Cloning of cDNAs, and Characterization of Enzymatic Properties, with Special Reference to Procathepsin E, J. Biol. Chem. 267: 16450–16459 (1992).PubMedGoogle Scholar
  12. 12.
    B. Foltmann, V. B. Pedersen, H. Jacobsen. D. Kauffman and G. Wybrandt, The Complete Amino Acid Sequence of Prochymosin, Proc. Natl Acad. Sci. U. S. A. 74: 2321–2324 (1977).PubMedCrossRefGoogle Scholar
  13. 13.
    M. Baudyš and V. Kostka, Covalent Structure of Chicken Pepsinogen, Eur. J. Biochem. 136: 89–99 (1983).PubMedCrossRefGoogle Scholar
  14. 14.
    K. Hayashi, K. Agata, M. Mochii, S. Yasugi, G. Eguchi and T. Mizuno, Molecular Cloning and the Nucleotide Sequence of cDNA for Embryonic Chicken Pepsinogen: Phylogenetic Relationship with Prochymosin, J. Biochem. 103: 290–296 (1988).PubMedGoogle Scholar
  15. 15.
    M. Tanji, T. Kageyama and K. Takahashi, Tuna Pepsinogens and Pepsins. Purification, Characterization and Amino-Terminal Sequences, Eur. J. Biochem. 177: 251–259 (1988).PubMedCrossRefGoogle Scholar
  16. 16.
    Z. Bohak, Purification and Characterization of Chicken Pepsinogen and Chicken Pepsin, J. Biol Chem. 244: 4638–4648 (1969).PubMedGoogle Scholar
  17. 17.
    E. Yakabe, M. Tanji, M. Ichinose, S. Goto, K. Miki, K. Kurokawa, H. Ito, T. Kageyama and K. Takahashi, Purification, Characterization, and Amino Acid Sequences of Pepsinogens and Pepsins from the Esophageal Mucosa of Bullfrog (Rana catesbeiana), J. Biol Chem. 266: 22436–22443 (1991).PubMedGoogle Scholar
  18. 18.
    I. M. Samloff, Slow Moving Protease and the Seven Pepsinogens. Electrophoretic Demonstration of the Existence of Eight Proteolytic Fractions in Human Gastric Mucosa, Gastroenterology 57: 659–669 (1969).PubMedGoogle Scholar
  19. 19.
    S. B. P. Athauda, M. Tanji, T. Kageyama and K. Takahashi, A Comparative Study on the NH2-Terminal Amino Acid Sequences and Some Other Properties of Six Isozymic Forms of Human Pepsinogens and Pepsins, J. Biol Chem. 106: 920–927 (1989).Google Scholar
  20. 20.
    T. Kageyama and K. Takahashi, Pepsinogen C and Pepsin C from Gastric Mucosa of Japanese Monkey, J. Biochem. 80: 983–992 (1976).PubMedGoogle Scholar
  21. 21.
    T. Kageyama and K. Takahashi, Pepsinogens and Pepsins from Gastric Mucosa of Japanese Monkey. Punfication and Characterization, J. Biochem. 79: 455–468 (1976).PubMedGoogle Scholar
  22. 22.
    K. Takahashi and T. Kageyama, Multiplicity and Intermediates of the Activation Mechanism of Zymogens of Gastric Aspartic Proteinases, in: “Aspartic Proteinases and Their Inhibitors”, V. Kostka, ed., pp.265–282, Walter de Gruyter, Berlin and New York (1985).Google Scholar
  23. 23.
    O. Matsuzaki and K. Takahashi, Improved Purification of Slow Moving Protease from Human Gastric Mucosa and Its Action on the B Chain of Oxidized Bovine Insulin, Biomed Res. 9: 515–523 (1988).Google Scholar
  24. 24.
    R. P. Shugerman, B. I. Hirschowitz, A. S. Brown, R. E. Schrohenloher and J. G. Spenney, A Unique “Mini” Pepsinogen Isolated from Bullfrog Esophageal Glands, J. Biol. Chem. 257: 795–798 (1982).PubMedGoogle Scholar
  25. 25.
    T. Kageyama and K. Takahashi, Isolation of an Activation Intermediate and Determination of the Amino Acid Sequence of the Activation Segment of Human Pepsinogen A, J. Biochem. 88: 571–582 (1980).PubMedGoogle Scholar
  26. 26.
    T. Kageyama and K. Takahashi, Monkey Pepsinogens and Pepsins. IV. The Amino Acid Sequence of the Activation Peptide Segment of Japanese Monkey Pepsinogen, J. Biochem. 88: 9–16 (1980).PubMedGoogle Scholar
  27. 27.
    T. Kageyama and K. Takahashi, Rabbit Pepsinogens. Purification, Characterization, Analysis of the Conversion Process to Pepsin, and Determination of the NH2-Terminal Amino Acid Sequences, Eur. J. Biochem. 141: 261–269 (1984).PubMedCrossRefGoogle Scholar
  28. 28.
    T. Kageyama, A. Moriyama and K. Takahashi, Purification and Characterization of Pepsinogens and Pepsins from Asiatic Black Bear, and Amino Acid Sequence Determination of the NH2-Terminal 60 Residues of the Major Pepsinogen, J. Biochem. 94: 1557–1567 (1983).PubMedGoogle Scholar
  29. 29.
    M. Harboe, P. M. Anderson and B. Foltmann, The Activation of Bovine Pepsinogen — Sequence of the Peptides Released, Identification of a Pepsin Inhibitor, J. Biol. Chem. 249: 4487–4494 (1974).PubMedGoogle Scholar
  30. 30.
    B. Foltmann and A. L. Jansen, Human Progastricsin — Analysis of Intermediates during Activation into Gastricsin and Determination of the Amino Acid Sequence of the Propart, Eur. J. Biochem. 128: 63–70 (1982).PubMedCrossRefGoogle Scholar
  31. 31.
    T. Kageyama and K. Takahashi, Monkey Pepsinogens and Pepsins. VII. Analysis of the Activation Process and Determiantion of the NH2-Terminal 60-Residue Sequence of Japanese Monkey Progastricsin, and Molecular Evolution of Pepsinogens, J. Biochem. 97: 1235–1246 (1985).PubMedGoogle Scholar
  32. 32.
    B. Foltmann and V B. Pedersen, Comparison of the Primary Structures of Acidic Proteinases and of Their Zymogens, in: “Acid Proteinases” J. Tang, ed., pp. 3–22, Plenum Press, New York (1977).Google Scholar
  33. 33.
    P. L. Faust, S. Kornfeld and J. M. Chirgwin, Cloning and Sequence Analysis of cDNA for Human Cathepsin D, Proc. Natl. Acad. Sci. U. S. A. 82: 4910–4914 (1985).PubMedCrossRefGoogle Scholar
  34. 34.
    A. R. Sielecki, A. A. Fedorov, A. Boodhoo, N. S. Andreeva and M. N. G. James, Molecular and Crystal Structures of Monoclinic Porcine Pepsin Refined at 1·8 Å Reslolution, J. Mol Biol. 214: 143–170 (1990)PubMedCrossRefGoogle Scholar
  35. 35.
    W. M. Fitch and E. Margoliash, Construction of Phylogenetic Trees.- A Method Based on Mutation Distances as Estimated from Cytochrome C Sequences is of General Applicability, Science 155: 279–284 (1967).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Kenji Takahashi
    • 1
  • Masao Tanji
    • 1
  • Etsuko Yakabe
    • 1
  • Akira Hirasawa
    • 1
  • Senerath B. P. Athauda
    • 1
  • Takashi Kageyama
    • 2
  1. 1.Department of Biophysics and BiochemistryThe University of TokyoTokyoJapan
  2. 2.Department of Cellular and Molecular Biology Primate Research InstituteKyoto UniversityInuyama, AichiJapan

Personalised recommendations