Breaking the Shackles of the Genetic Code: Engineering Retroviral Proteases Through Total Chemical Synthesis

  • Stephen B. H. Kent
  • Manuel Baca
  • John Elder
  • Maria Miller
  • Raymond Milton
  • Saskia Milton
  • J. K. M. Rao
  • Martina Schnölzer
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 362)


Since early this century one of the fundamental goals of organic chemistry has been to understand the molecular basis of enzyme action (1). These protein molecules are the machines of the cell, catalyzing essentially all of the chemical reactions in the biological world. The action of enzymes is characterized by extraordinary specificity and by the ability to effect, in aqueous solvent and at normal temperatures, chemical transformations that are otherwise imperceptibly slow. Early approaches to the study of enzymes involved the laborious and painstaking isolation of pure molecules from biological sources, such as tissue homogenates. Only indirect methods, such as selective chemical modification of amino acid side chains, could be used to study the functional imperatives of the protein molecule itself. Consequently, much more was known about the (usually low MW) substrates than about enzymes themselves.


Enzyme Molecule Feline Immunodeficiency Virus Solid Phase Peptide Synthesis Aspartyl Proteinase Peptide Segment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Fischer (1906), quoted in “Molecules and Life”, J.S. Fruton, Wiley-Interscience, New York, 1972, pp. 112–113Google Scholar
  2. 1b.
    E. Fischer, “Molecules and Life”, J.S. Fruton, Wiley-Interscience, New York, 1972, pp. 114Google Scholar
  3. 2.
    For example, see “Protein Engineering”, R.B. Freedman, R. Wetzel, eds., Current Opinion in Biotechnology, Vol. 3, Number 4 (August 1992).Google Scholar
  4. 3.
    J. A. Ellman, D. Mendel, P.G. Schultz, Site-specific incorporation of novel backbone structures into proteins, Science 255, 197–200 (1992).PubMedCrossRefGoogle Scholar
  5. 4.
    B.T. Chait, S.B.H. Kent, Weighing naked proteins: practical, high-accuracy mass measurement of peptides and proteins, Science 257, 1885–1894 (1992).PubMedCrossRefGoogle Scholar
  6. 5.
    M. Baca, S.B.H. Kent, Direct observation of a ternary complex between the dimeric enzyme HIV protease and a substrate-based inhibitor, J.Am.Chem.Soc. 114, 3992–3993 (1992).CrossRefGoogle Scholar
  7. 6.
    B.T. Chait, R. Wang, R. Beavis, S.B.H. Kent, Protein ladder sequencing, Science 262, 89–92 (1993).PubMedCrossRefGoogle Scholar
  8. 7.
    M. Schnlzer, S.B.H. Kent, Constructing proteins by dovetailing unprotected synthetic peptides: backbone engineered HIV protease, Science 256, 221–225 (1992).CrossRefGoogle Scholar
  9. 8.
    R.L. Talbott, E.E. Sparger, K.M. Lovelace, W.M. Fitch, N.C. Pedersen, P.A. Luciw, J.H. Elder, Nucleotide sequence and genomic organization of feline immunodeficiency virus, Proc. Natl. Acad. Sci. USA 86: 5743–5747 (1989).PubMedCrossRefGoogle Scholar
  10. 9.
    J. Elder, M. Schnlzer, C.S. Hasselkus-Light, M. Henson, D.A. Lerner, T.R. Philips, P.C. Wagaman, S.B.H. Kent, Identification of proteolytic processing sites within the Gag and Pol polyproteins of feline immunodeficiency virus, J. Virology 67, 1869–1876 (1993).PubMedGoogle Scholar
  11. 10.
    M. Schnlzer, P. Alewood, D. Alewood, S.B.H. Kent, “In situ” neutralization protocols in Boc-chemistry solid phase peptide synthesis: rapid, high yield assembly of difficult sequences, Int.J.Pept.Prot.Res. 40, 180–193 (1992).Google Scholar
  12. 11.
    J. Schneider, S.B.H. Kent, Enzymatic activity of a synthetic 99 residue protein corresponding to the putative HIV-1 protease, Cell 54, 363–368 (1988).PubMedCrossRefGoogle Scholar
  13. 12.
    A. Wlodawer, M. Miller, M. Jaskolski, B.K. Sathyanarayana, E. Baldwin, I.T. Weber, L. Selk, L. Clawson, J. Schneider, S.B.H. Kent, Crystal structure of synthetic HIV-1 protease: conserved fold in retroviral proteases, Science 245, 616–621 (1989).PubMedCrossRefGoogle Scholar
  14. 13.
    M. Miller, B.K. Sathyanarayana, M.V. Toth, G.R. Marshall, L. Clawson, L. Selk, J. Schneider, S.B.H. Kent, A. Wlodawer, Structure of a complex of synthetic HIV-1 protease with a substrate-based inhibitor at 2.3Å resolution, Science 246, 1149–1152 (1989).PubMedCrossRefGoogle Scholar
  15. 14.
    A.L. Swain, M. Miller, J. Green, D.H. Rich, J. Schneider, S.B.H. Kent, A. Wlodawer, X-ray crystallographic structure of a complex between synthetic HIV-1 protease and a substrate-based hydroxyethylamine inhibitor, Proc. Natl. Acad. Sci. USA 87, 8805–8809 (1990).PubMedCrossRefGoogle Scholar
  16. 15.
    M. Jaskolski, A.G. Tomasselli, T.K. Sawyer, D.G. Staples, R.L. Heinrikson, J. Schneider, S.B.H. Kent, A. Wlodawer, Structure at 2.5Å resolution of chemically synthesized HIV-1 protease complexed with a hydroxyethylene-based inhibitor, Biochemistry 30, 1600–1609 (1991).PubMedCrossRefGoogle Scholar
  17. 16.
    R.B. Merrifield, Solid phase synthesis, Science 232, 341–347 (1986).PubMedCrossRefGoogle Scholar
  18. 17.
    S.B.H. Kent, Chemical synthesis of peptides and protein, Ann. Rev. Biochem. 57, 957–984 (1988).PubMedCrossRefGoogle Scholar
  19. 18a.
    J. Blake, D. Yamashiro, K. Ramasharma, C.H. Li, Chemical synthesis of α-inhibin-92 by the thiocarboxyl segment coupling method, Int.J.Peptide Protein Res. 28, 468–476 (1986)CrossRefGoogle Scholar
  20. 18b.
    D. Yamashiro, C.H. Li, New segment synthesis of α-inhibin-92 by the acyl disulfide method, Int.J.Peptide Protein Res. 31, 322–334 (1988).CrossRefGoogle Scholar
  21. 19.
    Philip E. Dawson, Stephen B.H. Kent, Convenient total synthesis of a 4-Helix TASP molecule by chemoselective ligation, J.Am.Chem.Soc. 115, 7263–7266 (1993).CrossRefGoogle Scholar
  22. 20.
    Manuel Baca, Stephen B.H. Kent, Catalytic contribution of flap-substrate hydrogen bonds in HIV-1 protease explored by chemical synthesis, Proc. Natl. Acad. Sci. USA., 90, 11638–11642 (1993).PubMedCrossRefGoogle Scholar
  23. 21.
    J.S. Richardson, D.C. Richardson, Principles and patterns of protein folding, in “Prediction of Protein Structure and the Principles of Protein Conformation”, G.D. Fasman, ed., Plenum, New York, 1989, pp. 1–98.CrossRefGoogle Scholar
  24. 22.
    R.C deLisle Milton, S.C.F. Milton, S.B.H. Kent, Total chemical synthesis of a D-enzyme: the enantiomers of HIV-1 protease show reciprocal chiral substrate specificity, Science 256, 1445–1448 (1992).CrossRefGoogle Scholar
  25. 23.
    A.L. Mackay, Crystal enigma, Nature 342, 133 (1989).CrossRefGoogle Scholar
  26. 24.
    L Zawadzke J.M. Berg, The structure of a centrosymmetric protein crystal, Protein Structure Function and Genetics 16, 301–305 (1993)CrossRefGoogle Scholar
  27. 25.
    R.C. deLisle Milton, S.C.F. Milton, M. Schnlzer, S.B.H. Kent, Synthesis of proteins by chemical ligation of unprotected peptide segments: mirror-image enzyme molecules, D- and L-HIV protease analogs, Techniques in Protein Chemistry IV, Academic Press, New York, pp. 257–267 (1992).Google Scholar
  28. 26.
    M. Miller, J.K.M. Rao, S.C.F. Milton, R.C. deLisle Milton, S.B.H. Kent, Crystal structure of a synthetic D-enzyme prepared by chemical ligation, presented at the meeting of The Protein Society, San Diego, July 1993.Google Scholar
  29. 27.
    P.M.D. Fitzgerald, et al., Crystallographic analysis of a complex between human immunodeficiency virus type 1 protease and acetyl-pepstatin at 2.0 resolution, J. Biol. Chem. 265, 14209–14219 (1990).PubMedGoogle Scholar
  30. 28.
    K. Suguna, E.A. Padlan, C.W. Smith, W.D. Carlson, D.R. Davies, Binding of a reduced bond peptide inhibitor to the aspartyl proteinase from rhizopus chinensis: implications for a mechanism of action, Proc.Natl.Acad.Sci.USA. 84, 7009–7013 (1987).PubMedCrossRefGoogle Scholar
  31. 29.
    A.G. Tomasselli, W.J. Howe, T.K. Sawyer, A. Wlodawer, R.L. Heinrikson, The complexities of AIDS: an assessment of the HIV protease as a therapeutic target, Chimica Oggi pp.6–27 (May, 1991).Google Scholar
  32. 30.
    K.D. Parris, D.J. Hoover, D.R. Davies, Crystal structure of rhizopuspepsin/inhibitor complexes, in “Structure and Function of the Aspartyl Proteinases”, B.M. Dunn, ed., Plenum, New York, 1991, pp. 217–231.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Stephen B. H. Kent
    • 1
  • Manuel Baca
    • 1
  • John Elder
    • 1
  • Maria Miller
    • 2
  • Raymond Milton
    • 1
  • Saskia Milton
    • 1
  • J. K. M. Rao
    • 2
  • Martina Schnölzer
    • 1
  1. 1.The Scripps Research InstituteLa JollaUSA
  2. 2.NCI-FrederickUSA

Personalised recommendations