Skip to main content

The Molecular Structure of Human Progastricsin and its Comparison with that of Porcine Pepsinogen

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 362))

Abstract

Mammalian aspartic proteinases are synthesized as inactive precursors or zymogens. Stomach zymogens undergo a conversion to the active enzyme form autocatalytically at pH < 5.0 (1). The human gastric juice has two major groups of aspartic proteinases, the pepsins (EC3.4.23.1) and the gastricsins (EC3.4.23.3). Progastricsin or pepsinogen C (PGC) is converted to gastricsin by removal of the 43 amino-terminal residues of the prosegment. The resulting mature gastricsin has 329 amino acid residues. The sequence of human PGC has been determined independently in two laboratories by nucleotide sequencing of the gene (2) and of cDNA clones (3).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Foltmann, Essays in Biochem. 17:52–84 (1981).

    CAS  Google Scholar 

  2. T. Hayano, K. Sogawa, Y. Ichihara, Y. Fujii-Kuriyama and K. Takahashi, J. Biol. Chem. 263:1382–1385(1988).

    Google Scholar 

  3. R.T. Taggart, L.G. Cass, T.K. Mohandas, P. Derby, P. J. Barr, G. Pals and G. Bell, J. Biol Chem. 264:375–379 (1989).

    PubMed  CAS  Google Scholar 

  4. R.M. Herriott, J. Gen. Physiol. 22:65–78 (1939).

    Article  Google Scholar 

  5. G.E. Perlmann, J. Mol. Biol. 6:452–464 (1963).

    Article  PubMed  CAS  Google Scholar 

  6. P. McPhie, J. Biol Chem. 247:4277–4281 (1972).

    PubMed  CAS  Google Scholar 

  7. M. Bustin and A. Conway-Jacobs, J. Biol. Chem. 246:615–620 (1971).

    PubMed  CAS  Google Scholar 

  8. J. Al-Janabi, J.A. Hartsuck and J. Tang, J. Biol. Chem. 247:4628–4632 (1972).

    PubMed  CAS  Google Scholar 

  9. M. Funatsu, Y. Harada, K. Hayashi and T. Kaneda, Agr. Biol. Chem. 36:305–312 (1972).

    Article  CAS  Google Scholar 

  10. V.B. Pedersen and B. Foltmann, FEBS Lett. 35:255–256 (1973).

    Article  PubMed  CAS  Google Scholar 

  11. D.M. Glick, Y. Shalitin and C.R. Hitt, Biochemistry 28:2626–2630 (1989).

    Article  PubMed  CAS  Google Scholar 

  12. M.N.G. James and A.R. Sielecki, Nature 319:33–38 (1986).

    Article  PubMed  CAS  Google Scholar 

  13. A.R. Sielecki, M. Fujinaga, RJ. Read and M.N.G. James, J. Mol. Biol. 219:671–692 (1991).

    Article  PubMed  CAS  Google Scholar 

  14. J.A. Hartsuck, G. Koelsch and S.J. Remington, Proteins: Struct. Fund., Genet. 13:1–25 (1992).

    Article  CAS  Google Scholar 

  15. A.R. Sielecki, A.A. Fedorov, A. Boodhoo, N.S. Andreeva and M.N.G. James, J. Mol. Biol. 214:143–170 (1990).

    Article  PubMed  CAS  Google Scholar 

  16. J.B. Cooper, G. Khan, G. Taylor, I.J. Tickle and T.L. Blundell, J. Mol. Biol. 214:199–222 (1990).

    Article  PubMed  CAS  Google Scholar 

  17. C. Abad-Zapatero, T.J. Rydel and J. Erickson, Proteins: Struct., Fund. Genet. 8:62–81 (1990).

    Article  CAS  Google Scholar 

  18. J.A. Hartsuck, J. Marciniszyn, J.S. Huang and J. Tang, in: Acid Proteases, Structure, Function and Biology, J. Tang, ed., pp. 85–102, Plenum, New York (1977).

    Google Scholar 

  19. B. Foltmann and A.L. Jensen, Eur. J. Biochem. 128:63–70 (1982).

    Article  PubMed  CAS  Google Scholar 

  20. T. Kageyama, M. Ichinose, K. Miki, S.B. Athauda, M. Tanji and K. Takahashi, J. Biochem. 105:15–22 (1989).

    PubMed  CAS  Google Scholar 

  21. P.K. Ivanov, M.M. Chernaya, A.E. Gustchina, I.V. Pechik, S.V. Nikonov and N.I. Tarasova, Biochim. Biophys. Acta 1040:308–310 (1990).

    Article  PubMed  CAS  Google Scholar 

  22. A.J. Howard, C. Nielsen and N.H. Xuong, Methods in Enzymology 114:452–472 (1985).

    Article  PubMed  CAS  Google Scholar 

  23. R. Hamlin, Methods Enzymol. 114:416–452 (1985).

    Article  PubMed  CAS  Google Scholar 

  24. W.A. Hendrickson and J.H. Konnert, in: Computing in Crystallography, R. Diamond, S. Ramaseshan and K. Venkatesan, eds., pp. 13.01–13.23, Indian Institute of Sciences, International Union of Crystallography, Bangalore, India (1980).

    Google Scholar 

  25. B. Foltmann, in: Proceedings of the 18th Linderstrøm-Lang Conference on Aspartic Proteinases, B. Foltmann, ed., pp. 7–20, Elsinore, Denmark (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tarasova, N., James, M., Moore, S., Sielecki, A., Chernaia, M. (1995). The Molecular Structure of Human Progastricsin and its Comparison with that of Porcine Pepsinogen. In: Takahashi, K. (eds) Aspartic Proteinases. Advances in Experimental Medicine and Biology, vol 362. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1871-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1871-6_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5761-2

  • Online ISBN: 978-1-4615-1871-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics