Curie Point Pyrolysis Mass Spectrometry and Its Application to Bacterial Systematics

  • Michael Goodfellow
  • Jongsik Chun
  • Ekrem Atalan
  • Jean-Jacques Sanglier
Part of the Federation of European Microbiological Societies Symposium Series book series (FEMS, volume 75)


The need to classify, identify and type microorganisms is an ever present theme in microbiology, notably in clinical and industrial microbiology. Here, identification is critical for distinguishing between potential pathogens or spoilage organisms, and commensals or contaminants of no significance. Similarly, the choice of microorganisms for industrial screening programmes, especially those with a low throughput, is primarily a problem of distinguishing between known organisms and recognising new ones. Further, effective typing procedures are essential in epidemiological tracing and in eliminating sources of microbial contamination.


Neural Network Artificial Neural Network Canonical Variate Curie Point Streptomyces Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adriaans, B. and Shah, H. (1988) Fusobacterium ulcerans sp. nov. from tropical ulcers. Int. J. Syst. Bacteriol. 38, 447–448.CrossRefGoogle Scholar
  2. Anker, L.S. and Jurs, P.C. (1992) Prediction of carbon-13 nuclear magnetic resonance chemical shifts by artificial neural networks. Anal. Chem. 62, 1157–1164.CrossRefGoogle Scholar
  3. Aries, R.E., Gutteridge, G.S. and Ottley, T.W. (1986) Evaluation of a low cost, automated pyrolysis mass spectrometry. J. Anal. Appl. Pyrol. 9, 81–98.CrossRefGoogle Scholar
  4. Arrigo, P., Giuliano, F.,Scalia, F., Rapallo, A. and Damiani, G. (1991) Identification of a new motif on nucleic acid sequence data using Kohonen’s self-organizing map. Comp. Appl. Biol. Sci. 7, 353–357Google Scholar
  5. Atalan, E. (1993) Selective Isolation, Characterisation and Identification of Some Streptomyces Species. Ph. D. Thesis, University of Newcastle upon Tyne.Google Scholar
  6. Balfoort, H.W., Snoek, J., Smits, J.R.M., Breedveld, L.W., Hofstraat, J.W. and Ringelberg, J. (1992) Automatic identification of algae: Neural network analysis of flow cytometric data. J. Plank. Res. 14, 575–589.CrossRefGoogle Scholar
  7. Blum, A. (1992) Neural Networks in C++. John Wiley and Sons, New York.Google Scholar
  8. Boddy, L. and Morris, C.W. (1993) Neural network analysis of flow cytometry data, in “Flow Cytometry in Microbiology” (Lloyd, D., ed.), pp. 159–169. Springer-Verlag, London.Google Scholar
  9. Cartmill, T,D.I., Orr, K., Freeman, R. and Sisson, P.R. (1992) Nosocomial infection with Clostridium difficile investigated by pyrolysis mass spectrometry. J. Med. Microbiol 37, 352–356.PubMedCrossRefGoogle Scholar
  10. Chun, J., Atalan, E., Ward, A.C. and Goodfellow, M. (1993a) Artificial neural network analysis of pyrolysis mass spectrometric data in the identification of Streptomyces strains. FEMS Microbiol. Lett. 107, 321– 326.PubMedCrossRefGoogle Scholar
  11. Chun., J., Atalan, E., Kim, S-B., Kim, H-J., Hamid, M.E., Trujillo, M.E., Magee, J.G., Manfio, G.P., Ward, A.C. and Goodfellow, M. (1993b) Rapid identification of streptomycetes by artificial neural network analysis of pyrolysis mass spectra. FEMS Microbiol. Lett. 114, 115–120.PubMedCrossRefGoogle Scholar
  12. Cleratì, Y.,Thibault, J., Cheruy, A. and Corneu, G. (1991) Comparison of prediction performances between models obtained by the group method of data handling and neural networks for the alcoholic fermentation rate in enology. J. Ferment. Biotech. 71, 356–362.Google Scholar
  13. Colloch, N., Etchebest, C., Thoreau, E., Henrissat, B. and Mornon, J.P. (1993) Comparison of 3 algorithms for the assignment of secondary structure in proteins -the advantages of a consensus assignment. Protein Eng. 6, 377–382.CrossRefGoogle Scholar
  14. Demeler, B. and Zhou, G. (1991) Neural network optimization for E. coli promoter prediction. Nucleic Acids Res. 19, 1593–1599.PubMedCrossRefGoogle Scholar
  15. Donnison, A.M., Gutteridge, C.S., Norris, JR., Morgan, H.W. and Daniel, R. (1986) A preliminary grouping of New Zealand Thermus strains by pyrolysis mass spectrometry. J. Anal. Appl. Pyrol. 9, 281– 285.CrossRefGoogle Scholar
  16. Duerden, B.I., Eley, A., Goodwin, L., Magee, J.T., Hindmarch, J.M. and Bennett, K.W. (1989) A comparison of Bacteroides ureolyticus isolates from different clinical sources. J. Med. Microbiol. 29, 63–73.PubMedCrossRefGoogle Scholar
  17. Fessenden, R.J. and Gyorgyi, L. (1991) Identifying functional groups in IR spectra using an artificial neural network. J. Chem. Soc. Perkin Trans. 2, 1755–1762.Google Scholar
  18. Freeman, J.A. and Skapura, D.M. (1991) Neural Networks: Algorithms, Applications, and Programming Techniques. Addison-Wesley Publishing Company, Reading, MA.Google Scholar
  19. Freeman, R., Goodfellow, M., Gould, F.K., Hudson, S.J. and Lightfoot, N.F. (1990) Pyrolysis mass spectrometry for the rapid epidemiological typing of clinically significant bacterial pathogens. J. Med. Microbiol. 32, 283486.CrossRefGoogle Scholar
  20. Freeman, R., Sisson, P.R., Lightfoot, N.F. and McLauchlin, J. (1991a) Analysis of epidemic and sporadic strains of Listeria monocytogenes by pyrolysis mass spectrometry. Lett. Appl. Microbiol. 12, 133–136.CrossRefGoogle Scholar
  21. Freeman, R., Gould, F.K., Sisson, PR. and Lightfoot, N.F. (1991b) Strain differentiation of capsule type 23 penicillin-resistant Streptococcus pneumoniae from nosocomial infections by pyrolysis mass spectrometry. Lett. Appl. Microbiol. 13, 28–31.CrossRefGoogle Scholar
  22. Freeman, R., Goodacre, R., Sisson, P.R., Magee, J.G., Ward, A.C. and Lightfoot, N.F. (1994a) Rapid identification of species within the Mycobacterium tuberculosis complex by artificial neural network analysis of pyrolysis mass spectra. J. Med. Microbiol. (in press).Google Scholar
  23. Freeman, R., Law, D., Sisson, P.R., Ward, A.C. and Lightfoot, N.F. (1994b) Rapid detection of vero cytotoxin production in Eschehchia coli by artificial neural network analysis of pyrolysis mass spectra. J. Med. Microbiol. (in press).Google Scholar
  24. Goodacre, R. and Berkeley, R.C.W. (1990) Detection of small genotypic changes in Escherichia coli by pyrolysis mass spectrometry. FEMS Microbiol. Lett. 71, 133–138.CrossRefGoogle Scholar
  25. Goodacre, R. and D.B. Kell (1993) Rapid and quantitative analysis of bioprocesses using pyrolysis mass spectrometry and neural networks: application to indole production. Anal. Chim. Acta 279, 17–26.CrossRefGoogle Scholar
  26. Goodacre, R., Hartmann, A., Beringer, J.E. and Berkeley, R.C.W. (1991) The use of pyrolysis mass spectrometry in the characterization of Rhizobium meliloti. Lett. Appl. Microbiol. 13, 157–160.CrossRefGoogle Scholar
  27. Goodacre, R., Kell, D.B. and Bianchi, G. (1992) Neural networks and olive oil. Nature 359, 594.CrossRefGoogle Scholar
  28. Goodacre, R., Kell, D.B. and Bianchi, G. (1993a) Rapid assessment of virgin olive oils and other seed oils using pyrolysis mass spectrometry and artificial neural networks. J. Sci. Food Agric. 63, 297–307.CrossRefGoogle Scholar
  29. Goodacre, R., Edmonds, A.N. and Kell, D.B. (1993b) Quantitative analysis of the pyrolysis-mass spectra of complex mixtures using artificial neural networks: application to amino acids in glycogen. J. Anal. Appl. Pyrol. 26, 93–114.CrossRefGoogle Scholar
  30. Goodacre, R., Neal, M.J., Kell, D.B., Greenham, L.W., Noble, W.C. and Harvey, R.G. (1994) Rapid identification using pyrolysis mass spectrometry and artificial neural networks of Propionibacterium acnes isolated from dogs. J. Appl. Bacteriol. 76, 124–134.PubMedCrossRefGoogle Scholar
  31. Goodfellow, M. and O’Donnell, A.G (1989) Search and discovery of industrially significant actinomycetes, in “Microbial Products: New Approaches” (Baumberg, S., Hunter, I.S. and Rhodes, P.M., eds.), pp. 343–383, Cambridge University Press, Cambridge.Google Scholar
  32. Gould, F.K., Freeman, R., Sisson, P.R., Cookson, B.D. and Lightfoot, N.F. (1991) Inter-strain comparison by pyrolysis mass spectrometry in the investigation of Staphylococcus aureus nosocomial infection. J. Hosp. Infect. 19,41–48.PubMedCrossRefGoogle Scholar
  33. Gower, J.C. (1971) A general coefficient of similarity and some of its properties. Biometrics 27, 857–874.CrossRefGoogle Scholar
  34. Gutteridge, C.S. (1987) Characterization of microorganisms by pyrolysis mass spectrometry. Meth. Microbiol. 19, 227–272.CrossRefGoogle Scholar
  35. Gutteridge, C.S. and Norris, J.R. (1979) The application of pyrolysis techniques to the identification of microorganisms. J. Appl. Bacteriol. 47, 5–43.PubMedCrossRefGoogle Scholar
  36. Gutteridge, C.S., Vallis, L. and MacFie, H.J.H. (1985) Numerical methods in the classification of micro-organisms by pyrolysis mass spectrometry, in “Computer-Assisted Bacterial Systematics” (Goodfellow, M., Jones, D. and Priest, FG., eds), pp. 369–401. Academic Press, London.Google Scholar
  37. Hertz, J., Krogh, A. and Palmer, R.G. (1991) Introduction to the Theory of Neural Computation. Addison-Wesley, Redwood City, CA.Google Scholar
  38. Hindmarch, J.M., Magee, J.T., Hadfield, M.A. and Duerden, B.I. (1990) A pyrolysis-mass spectrometry study of Corynebacterium spp.. J. Med. Microbiol. 31, 137–149.PubMedCrossRefGoogle Scholar
  39. Irwin, W.J. (1982) Analytical Pyrolysis: A Comprehensive Guide. Marcel Dekker, New York.Google Scholar
  40. Kay, H.E., Coutinho, H.L.C., Fattori, M., Manfio, G.P., Goodacre, R., Nuti, M.P., Basaglia, M. and Beringer, J.E. (1994) The identification of Bradyrhizobium japonicum strains isolated from Italian soils. Microbiology (in press).Google Scholar
  41. Kennedy, M.J. and Thakur, M.S. (1993) The use of neural networks to aid in microorganism identification: A case study of Haemophilus species identification. Antonie van Leeuwenhoek 63, 35–38.PubMedCrossRefGoogle Scholar
  42. Kjaer, M. and Poulsen, F.M. (1991) Identification of 2D H-1-NMR antiphase cross peaks using a neural network. J. Magn. Reson. 94, 659–663.Google Scholar
  43. Kohonen, T. (1989) Self-Organization and Associative Memory. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  44. Low, J.C., Chalmers, R.M., Donachie, W., Freeman, R., McLauchlin, J. and Sisson, P.R. (1992) Pyrolysis mass spectrometry of Listen a monocytogenes isolates from sheep. Res. Vet. Sci. 53, 64–67.PubMedCrossRefGoogle Scholar
  45. Magee, J.T. (1993) Whole-organism fingerprinting, in “Handbook of New Bacterial Systematics” (Goodfellow, M. and O’Donnell, A.G., eds), pp. 383–427. Academic Press, London.Google Scholar
  46. Magee, J.T. (1994) Analytical fingerprinting methods, in “Chemical Methods in Prokaryotic Systematics” (Goodfellow, M. and O’Donnell, A.G., eds), pp. 523–553. John Wiley and Sons Ltd., Chichester.Google Scholar
  47. Magee, J.T., Hindmarch, J.M., Bennett, K.W., Duerden, B.I. and Aries, R.E. (1989a) A pyrolysis mass spectrometry study of fusobacteria. J. Med. Microbiol. 28, 227–236.PubMedCrossRefGoogle Scholar
  48. Magee, J.T., Hindmarch, J.M., Burnett, I.A. and Pease, A. (1989b) Epidemiological typing of Streptococcus pyogenesby pyrolysis mass spectrometry. J. Med. Microbiol. 30, 273–278.PubMedCrossRefGoogle Scholar
  49. Magee, J.T., Hindmarch, J.M. and Nicol, CD. (1991) Typing of Staphylococcus pyogenes by pyrolysis mass spectrometry. J. Med. Microbiol. 35, 304–306.PubMedCrossRefGoogle Scholar
  50. Mathers, K., Freeman, R., Sisson, P.R. and Lightfoot, N.F. (1994) Differentiation between bacterial species and sub-species by pyrolysis mass spectrometry of extracted DNA. Zbl. Bakt. (in press).Google Scholar
  51. Meuzelaar, H.L.C and Kistemaker, P.G. (1973) A technique for fast and reproducible fingerprinting of bacteria by pyrolysis mass spectrometry. Anal. Chem. 45, 587–590.PubMedCrossRefGoogle Scholar
  52. Meuzelaar, H.L.C., Haverkamp, J. and Hileman, F.D. (1982) Pyrolysis Mass Spectrometry of Recent and Fossil Biomaterials. Compendium and Atlas. Elsevier, Amsterdam.Google Scholar
  53. Meyer, B.T., Hansen, T., Nute, D., Albersheim, P., Darvill, A., York, W. and Sellers, J. (1991) Identification of the 1H-NMR spectra of complex oligosaccharides with artificial neural networks. Science 251, 542–544.PubMedCrossRefGoogle Scholar
  54. Millership, S. (1993) Use of a neural network for analysis of bacterial whole cell protein fingerprints. Binary 5, 126–131.Google Scholar
  55. Morris, C.W. and Boddy, L. (1993) Some neural network packages: A comparative review. Binary 5, 7–9.Google Scholar
  56. Morris, C.W., Boddy, L. and Allman, R. (1992) Identification of basidiomycete spores by neural network analysis of flow cytometry data. Mycol. Res. 96, 697–701.CrossRefGoogle Scholar
  57. Munk, M.E., Madison, M.S. and Robb, E.W. (1991) Neural network models for infrared spectrum interpretation. Mikrochim. Acta (Wien) 2, 505–514.CrossRefGoogle Scholar
  58. Neider, J.C. (1979) Genstat Reference Manual. Scientific and Social Service Program Library, University of Edinburgh.Google Scholar
  59. Okami, Y. and Hotta, K. (1988) Search and discovery of new antibiotics, in “Actinomycetes in Biotechnology” (Goodfellow, M., Williams, S.T. and Mordarski, M., eds.), pp. 33–67. Academic Press, London.CrossRefGoogle Scholar
  60. Orr, K., Gould, F.K., Sisson, P.R., Lightfoot, N.F., Freeman, R. and Burdess, D. (1991) Rapid interstrain comparison by pyrolysis mass spectrometry in nosocomial infection with Xanthomonas maltophilia. J. Hosp. Infect. 17, 187–195.PubMedCrossRefGoogle Scholar
  61. Ottley, T.W. and Maddock, J. (1986) The use of pyrolysis mass spectrometry. Lab. Proc., October, 53–55.Google Scholar
  62. Qian, N. and Sejnowski, T.S. (1988) Predicting the secondary structure of globular proteins using neural network models. J. Mol. Biol. 202, 865–884.PubMedCrossRefGoogle Scholar
  63. Rataj, T. and J. Schindler (1991) Identification of bacteria by a multilayer neural network. Binary 3, 159– 164.Google Scholar
  64. Robb, E.W. and Munk, M.E. (1990) A neural network approach to infrared spectrum interpretation. Mikrochim. Acta 1, 131–155.CrossRefGoogle Scholar
  65. Rumelhart, D.E., McClelland, J.L and the PDP Research Group (1986) Parallel Distributed Processing. MIT Press, Cambridge.Google Scholar
  66. Saddler, G.S., Falconer, C. and Sanglier, J.J. (1989) Preliminary experiments for the selection and identification of actinomycetes by pyrolysis mass spectrometry. Actinomycetologia 2, S3–S4.Google Scholar
  67. Sanglier, J-J., Whitehead, D., Saddler, G.S., Ferguson, E.V. and Goodfellow, M. (1992) Pyrolysis mass spectrometry as a method for the classification, identification and selection of actinomycetes. Gene 115, 235–242.PubMedCrossRefGoogle Scholar
  68. Schleifer, K.H., Ludwig, W. and Amann, R. (1993) Nucleic acid probes, in “Handbook of New Bacterial Systematics” (Goodfellow, M. and O’Donnell, A.G., eds.), pp. 463–524. Academic Press, London.Google Scholar
  69. Schulze, H.G, Blades, M.W., Bree, A.V., Gorzalka, B.B., Greek, L.S.and Turner, R.F.B. (1994) Characteristics of backpropagation neural networks employed in the identification of neurotransmitter Raman spectra. Appl. Spectr. 48, 50–57.CrossRefGoogle Scholar
  70. Sellers, J., York, W., Albersheim, P., Darvill, A. and Meyer, B. (1990) Identification of the mass spectra of partially methylated alditol acetates by artificial neural networks. Carbohydr. Res. 207, c1–c5.CrossRefGoogle Scholar
  71. Shute, L.A., Berkeley, R.C.W., Norris, J.R. and Gutteridge, C.S. (1985) Pyrolysis mass spectrometry in bacterial systematics, in “Chemical Methods in Bacterial Systematics” (Goodfellow, M. and Minnikin, D.E., eds.), pp. 95–114. Academic Press, London.Google Scholar
  72. Simpson, P.K. (1990) Artificial Neural Systems. Pergamon Press, Oxford.Google Scholar
  73. Sisson, P.R., Freeman, R., Magee, J.G. and Lightfoot, N.F. (1991a) Differentiation between mycobacteria of the Mycobacterium tuberculosis complex by pyrolysis mass spectrometry. Tubercle 72, 206–209.PubMedCrossRefGoogle Scholar
  74. Sisson, P.R., Freeman, R., Lightfoot, N.F. and Richardson, I.R. (1991b) Incrimination of an environmental source of a case of Legionnaires’ disease by pyrolysis mass spectrometry. Epidermiol. Infect. 107, 127– 132.CrossRefGoogle Scholar
  75. Sisson, P.R., Freeman, R., Gould, F.K. and Lightfoot, N.F. (1991c) Strain differentiation of nosocomial isolates of Pseudomonas aeruginosa by pyrolysis mass spectrometry. J. Hosp. Infect. 19, 137–140.PubMedCrossRefGoogle Scholar
  76. Sisson, P.R., Lightfoot, N.F. and Freeman, R. (1992a) Pyrolysis mass spectrometry of micro-organisms. PHLS Microbiology Digest 9, 65–68.Google Scholar
  77. Sisson, P.R., Freeman, R., Magee, J.G. and Lightfoot, N.F. (1992b) Rapid differentiation of Mycobacterium xenopi from mycobacteria of the Mycobacterium avium-intracellulare complex by pyrolysis mass spectrometry. J. Clin. Pathol. 45, 355–357.PubMedCrossRefGoogle Scholar
  78. Snyder, E.E. and Stormo, G.D. (1993) Identification of coding regions in genomic DNA sequences: an application of dynamic programming and neural networks. Nucleic Acids Res. 21, 607–613.PubMedCrossRefGoogle Scholar
  79. Suzuki, K., Goodfellow, M. and O’Donnell, A.G. (1993) Cell envelopes and classification, in “Handbook of New Bacterial Systematics” (Goodfellow, M. and O’Donnell, A.G., eds.), pp. 195–250. Academic Press, London.Google Scholar
  80. Tanabe, K., Tamura, T. and Uesaka, H. (1992) Neural network system for the identification of infrared spectra. Appl. Spectr. 46, 807–810.CrossRefGoogle Scholar
  81. Vickers, J.C., Williams, ST. and Ross, G.W. (1984) A taxonomic approach to selective isolation of streptomycetes from soil, in “Biological, Biochemical and Biomedical Aspects of Actinomycetes” (Ortiz-Ortiz, L., Bojalil, L.F. and Yakoleff, V., eds.), pp. 553–561. Academic Press, Orlando.Google Scholar
  82. Vieth, M. and A. Kolinski (1991) Prediction of protein secondary structure by an enhanced neural network. ActaBiochim. Polon. 38:335–351.Google Scholar
  83. Weigel, U.M. and Herges, R. (1992) Automatic interpretation of infrared spectra -recognition of aromatic substitution patterns using neural networks. J. Chem. Inform. Comp. Sci. 32, 723–731.CrossRefGoogle Scholar
  84. White, H. (1990) Connectional nonparametric regression: Multilayer feedforward networks can learn arbitrary mappings. Neural Networks 3, 535–549.CrossRefGoogle Scholar
  85. Willis, M.J., Di Massimo, C, Montague, G.A., Tham, M.T. and Morris, A.J. (1991) Artificial neural networks in process engineering. IEE Proc.-D 138, 256–266.Google Scholar
  86. Windig, W., Kistemaker, P.G., Haverkamp, J. and Meuzelaar, H.L.C. (1979) The effects of sample preparation, pyrolysis and pyrolysate transfer conditions on pyrolysis mass spectra. J. Anal. Appl. Pyrol. 1, 39–52.CrossRefGoogle Scholar
  87. Winstanley, T.G., Magee, J.T., Limb, D.I., Hindmarch, J.M., Spencer, R.C., Whiley, R.A., Beighton, D. and Hardie, J.M. (1992) A numerical taxonomic study of the ’Streptococcus milleri’ group based upon conventional phenotypic tests and pyrolysis mass spectrometry. J. Med. Microbiol. 36, 149–155.PubMedCrossRefGoogle Scholar
  88. Wold, S. and Söderström, M.J. (1977) SIMCA: A method for analysing chemical data in terms of similarity and analogy, in “Chemometrics: Theory and Application” (Kowalski, B., ed.), Series no. 52, pp. 243– 282. ACS Symposium Washington, DC: American Chemical Society.CrossRefGoogle Scholar
  89. Zurada, J.M. (1992) Introduction to Artificial Neural Systems. West Publishing Company, St. Paul.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Michael Goodfellow
    • 1
  • Jongsik Chun
    • 1
  • Ekrem Atalan
    • 1
  • Jean-Jacques Sanglier
    • 2
  1. 1.Department of MicrobiologyThe Medical SchoolNewcastle upon TyneUK
  2. 2.Preclinical ResearchSandoz Pharma Ltd.BasleSwitzerland

Personalised recommendations