Advertisement

Sympatho-Adrenergic Regulation of Duodenal Alkaline Secretion

  • Lars Fändriks
  • Claes Jönson
Part of the Hans Selye Symposia on Neuroendocrinology and Stress book series (HSSN, volume 2)

Abstract

Acid secreted by the gastric parietal cells is an important factor in the digestive process. The acidity is, however, a potential threat to the organism itself and several protective mechanisms are utilized to prevent autodigestion. Today, it is well established that there exists a bicarbonate secretion by the gastroduodenal surface epithelium which neutralizes gastric acid1,2. Micro-pH-electrodes have been used to demonstrate a pH-gradient immediately above the epithelial cells; pH at the cell surface being neutral despite highly acidic luminal contents3,4. In the duodenum, this transport of bicarbonate is probably the most important factor for protection against gastric acid, whereas it plays a more subordinate role in the stomach1,5.

Keywords

Vagal Stimulation Splanchnic Nerve Total Blood Volume Bicarbonate Secretion Mucosal Protection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Allen, G. Flemström, A. Garner, and E. Kivilaakso, Gastroduodenal mucosal protection, Physiol Rev. 73:823 (1993).PubMedGoogle Scholar
  2. 2.
    J. Crampton, and W.D.W. Rees, Gastroduodenal bicarbonate secretion: its role in protecting the stomach and duodenum, in: “Recent Advances in Gastroenterology 6,” R.E. Pounder, ed., Churchill Livingstone, Edinburgh, London, Melbourne and New York (1986).Google Scholar
  3. 3.
    G. Flemström, and E. Kivilaakso, Demonstration of a pH gradient at the luminal vivo and its dependence on mucosal alkaline secretion, Gastroenterology. 84:787 (1983).PubMedGoogle Scholar
  4. 4.
    E.M.M. Quigley, and L.A. Turnberg, pH of the microclimate lining human gastric and duodenal mucosa in vivo, Gastroenterology. 92:1876 (1987).PubMedGoogle Scholar
  5. 5.
    G. Flemström, and A. Garner, Gastroduodenal HCO3-transport: characteristics and proposed role in acidity regulation and mucosal protection, Am J Physiol. 242:G183 (1982).PubMedGoogle Scholar
  6. 6.
    M.A. Wright, H.W. Jennings, and R. Lium, The influence of nerves and drugs on secretion by the small intestine and an investigation of the enzymes in the intestinal juice, Quart J Exp Physiol. 30:73 (1940).Google Scholar
  7. 7.
    O. Nylander, G. Flemström, D. Delbro and L. Fändriks, Vagal influence on gastroduodenal HCO3-secretion in the cat in vivo, Am J Physiol. 252:G522 (1987).PubMedGoogle Scholar
  8. 8.
    J.R. Crampton, L.G. Gibbons, and W.D.W. Rees, Neural regulation of duodenal alkali secretion:effects of electrical field stimulation, Am J Physiol. 254:G162 (1988).PubMedGoogle Scholar
  9. 9.
    B. Smedfors, and C. Johansson, Cholinergic influence on duodenal bicarbonate response to hydrochloric acid perfusion in the conscious rat, Scand J Gastroenterol. 21:809 (1986).PubMedCrossRefGoogle Scholar
  10. 10.
    L. Fändriks, C. Jönson, O. Nylander, and G. Flemström, Neural influences on gastroduodenal secretion, in: “Ulcer Disease, New Aspects of Pathogenesis and Pharmacology,” S. Szabo, C.J. Pfeiffer, eds., CRC Press, Boca Raton (1989).Google Scholar
  11. 11.
    L. Fändriks, Vagal and splanchnic neural influences on gastric and duodenal bicarbonate secretions. An experimental study in the cat, Acta Physiol Scand. 128: Suppl. 555 (1986).PubMedCrossRefGoogle Scholar
  12. 12.
    L. Fändriks, and C. Jönson, Influences of the sympatho-adrenal system on gastric motility and acid secretion and on gastroduodenal bicarbonate secretion, Acta Physiol Scand. 135:285 (1987).CrossRefGoogle Scholar
  13. 13.
    L. Fändriks, C. Jönson, and O. Nylander, Effects of splanchnic nerve stimulation and of clonidine on gastric and duodenal HC03--secretion in the anesthetized cat, Acta Physiol Scand. 130:251 (1987).PubMedCrossRefGoogle Scholar
  14. 14.
    C. Jönson, and L. Fändriks, Splanchnic nerve stimulation inhibits duodenal HC03-secretion in the rat, Am J Physiol 255:G709 (1989).Google Scholar
  15. 15.
    J.F. Pearcy, and E.J. van Liere, Studies on the visceral nervous system, Am J Physiol 78:64 (1926).Google Scholar
  16. 16.
    H. Hermann, and G. Morin, Mise en evidence d’un reflexe inhibiteur intestino-intestinal, CR Soc Biol 115:529 (1934).Google Scholar
  17. 17.
    L. Fändriks, Sympatho-adrenergic inhibition of vagally induced gastric motility and gastroduodenal HCC3-secretions in the cat, Acta Physiol Scand. 128:555 (1986).PubMedCrossRefGoogle Scholar
  18. 18.
    C. Jönson, and L. Fändriks, Afferent electrical stimulation of mesenteric nerves inhibits duodenal HC03-secretion via a spinal reflex activation of the splanchnic nerves in the rat, Acta Physiol Scand. 133:545 (1988).PubMedCrossRefGoogle Scholar
  19. 19.
    A. Kuntz, and J. Saccomano, Reflex inhibition of intestinal motility mediated through decentralized prevertebral ganglia, J Neurophysiol. 105:251 (1944).Google Scholar
  20. 20.
    S. Chien, Role of the sympathetic nervous system in hemorrhage, Physiol Rev. 47:214 (1967).PubMedGoogle Scholar
  21. 21.
    K. Ito, A. Sato, K. Shimamura, and R.S. Swenson, Reflex changes in sympatho-adrenal medullary functions in response to baroreceptor stimulation in anesthetized rats, J Auton Nerv Syst. 10:295 (1984).PubMedCrossRefGoogle Scholar
  22. 22.
    C. Jönson, and L. Fändriks, Bleeding inhibits vagally-induced duodenal HCO3-secretion via activation of the splanchnic nerves in anesthetized rats, Acta Physiol Scand. 130:259 (1987).PubMedCrossRefGoogle Scholar
  23. 23.
    C. Jönson, P. Tunbäck-Hansson and L. Fändriks, Splanchnic nerve activation inhibits HCO3-secretion from the duodenal mucosa induced by luminal acid in the rat, Gastroenterology. 96:45 (1989).PubMedGoogle Scholar
  24. 24.
    C. Jönson, O. Nylander, G. Flemström, and L Fändriks, Vagal stimulation of duodenal HCO3--secretion in anaesthetized rats, Acta Physiol Scand. 128:65 (1986).PubMedCrossRefGoogle Scholar
  25. 25.
    A.R. Wakade, R.K. Malhotra, T.D. Wakade, and W.R. Dixon, Simultaneous secretion of catecholamines from the adrenal medulla and of [3H] norepinephrine from sympathetic nerves from a single test preparation: different effects of agents on the secretion, Neuroscience. 18:877 (1986).PubMedCrossRefGoogle Scholar
  26. 26.
    A. Cobbold, B. Folkow, O. Lundgren, and I. Wallentin, Blood flow, capillary filtration coefficients and regional blood volume responses in the intestine of the cat during stimulation of the hypothalamic “defence area”, Acta Physiol Scand. 61:467 (1964).PubMedGoogle Scholar
  27. 27.
    C.P. Yardley, and S.M. Hilton, The hypothalamic and brainstem areas from which the cardiovascular and behavioral components of the defence reaction are elicited in the rat, J Auton Nerv Syst. 15:227 (1986).PubMedCrossRefGoogle Scholar
  28. 28.
    L. Fändriks, C. Jönson, and B. Lisander, Hypothalamic inhibition of duodenal alkaline secretion via a sympatho-adrenergic mechanism in the rat, Acta Physiol Scand. 137:357 (1989).PubMedCrossRefGoogle Scholar
  29. 29.
    H.J. Lenz, and M.R. Brown, Cerebroventricular calcitonin gene-related peptide inhibits rat duodenal bicarbonate secretion by release of norepinephrine and vasopressin, J Clin Invest. 85:25 (1990).PubMedCrossRefGoogle Scholar
  30. 30.
    C. Jönson, and L. Fändriks, Bleeding-induced decrease in duodenal HCO3-secretion in the rat is mediated via alpha-2 adrenoceptors, Acta Physiol Scand. 130:387 (1987).PubMedCrossRefGoogle Scholar
  31. 31.
    L. Fändriks, and C. Jönson, Effects of adrenoceptor antagonists on vagally induced gastric and duodenal HCO3--secretion in the cat, Acta Physiol Scand. 130:243 (1987).PubMedCrossRefGoogle Scholar
  32. 32.
    C. Jönson, A. Hamlet, and L. Fändriks, Hypovolemia inhibits acid-induced alkaline transport in the rat duodenum via an alpha-2 adrenergic mechanism, Acta Physiol Scand. 142:367 (1991).PubMedCrossRefGoogle Scholar
  33. 33.
    O. Nylander, and G. Flemström, Effects of alpha-adrenoceptor agonists and antagonists on duodenal surface epithelial HCO3--secretion in vivo, Acta Physiol Scand. 126:433 (1986).PubMedCrossRefGoogle Scholar
  34. 34.
    L. Knutson, and G. Flemström, Duodenal mucosal bicarbonate secretion in man. Stimulation by acid and inhibition by the alpha-2 adrenoceptor agonist clonidine, Gut. 30:1707 (1989).CrossRefGoogle Scholar
  35. 35.
    N.G. Kock, An experimental analysis of mechanisms engaged in reflex inhibition of intestinal motility, Acta Physiol Scand. 47:suppl 164 (1959).CrossRefGoogle Scholar
  36. 36.
    B. Folkow, D.H. Lewis, O. Lundgren, S. Mellander, and I. Wallentin, Effect of graded vasoconstrictor fibre stimulation on the intestinal resistance and capacitance vessels, Acta Physiol Scand. 61:445 (1964).PubMedCrossRefGoogle Scholar
  37. 37.
    B. Folkow, D.H. Lewis, O. Lundgren, S. Mellander, and I. Wallentin, The effect of the sympathetic vasoconstrictor fibres on the distribution of capillary blood flow in the intestine, Acta Physiol Scand. 61:458 (1964).PubMedCrossRefGoogle Scholar
  38. 38.
    S. Sjövall, Redfors, D. Hallbäck, S. Eklund, M. Jodal, and O. Lundgren, The effect of splanchnic nerve stimulation on blood flow distribution, villous tissue osmolality and fluid and electrolyte transport in the small intestine in the cat, Acta Physiol Scand. 117:359 (1983).PubMedCrossRefGoogle Scholar
  39. 39.
    O. Lundgren, Microcirculation of the gastrointestinal tract and pancreas, in: “Handbook of Physiology -The Cardiovascular System IV,” E.M. Renkin, C.C. Michel, S.R. Geiger, eds., American Physiological Society: Bethesda (1984).Google Scholar
  40. 40.
    F.W. Leung, M. Itoh, K. Hirabayashi, and P.H. Guth, Role of duodenal blood flow in gastric and duodenal mucosal injury in the rat, Gastroenterology. 86:281 (1985).Google Scholar
  41. 41.
    A.P. Shepard, and G.L. Riedel, Intramural distribution of intestinal blood flow during sympathetic stimulation, Am J Physiol 255:H1091 (1988).Google Scholar
  42. 42.
    R. Schiessel, M. Starlinger, E. Kovats, W. Appel, W. Feil, and A. Simon, Alkaline secretion of rabbit duodenum in vivo: its dependence of acid base balance and mucosal blood flow, in: “Mechanisms of Mucosal Protection in the Upper Gastrointestinal Tract,” A. Allen, G. Flemström, A. Garner, W. Silen, LA. Turnberg, eds., Raven Press, New York (1984).Google Scholar
  43. 43.
    M. Starlinger, and R. Schiessel, Bicarbonate (HCO3) delivery to the gastroduodenal mucosa by the blood: its importance for mucosal integrity, Gut. 29:647 (1988).PubMedCrossRefGoogle Scholar
  44. 44.
    C. Jönson, L. Holm, T. Jansson, and L. Fändriks, Effects of hypovolemia on duodenal blood flow, arterial [HCO3-] and HCO3-output in the rat duodenum, Am J Physiol 259:G179 (1990).PubMedGoogle Scholar
  45. 45.
    H. Sjövall, Sympathetic control of jejunal fluid and electrolyte transport, Acta Physiol Scand. Suppl.535 (1984).Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Lars Fändriks
  • Claes Jönson

There are no affiliations available

Personalised recommendations