Biophysical Characterization of Membrane and Cytoskeletal Proteins by Sedimentation Analysis

  • Michael B. Morris
  • Gregory B. Ralston
Part of the Subcellular Biochemistry book series (SCBI, volume 23)

Abstract

Analytical ultracentrifugation can be used to determine a number of important properties of proteins including molecular weight, the thermodynamic parameters governing self-associations and heterogeneous interactions, and nonideality. Hydrodynamic properties including the sedimentation, diffusion, and factional coefficients, and molecular shape can also be determined. There are three fundamental experiments from which information can be obtained: (1) sedimentation velocity, in which the rate of transport of a sedimenting protein boundary is measured, (2) sedimentation equilibrium, in which the concentration distribution of protein is measured in the absence of net flow, and (3) diffusion experiments, in which the rate of spreading of a protein boundary is determined. Usually the data are obtained using one or more of the optical systems available on an analytical ultracentrifuge (Schachman, 1959; Svedberg and Pederson, 1940; Van Holde, 1971). However, the preparative ultracentrifuge, in combination with precise fractionation techniques, can provide information of similar accuracy in many cases (Attri and Minton, 1983, 1984, 1986; Howlett, 1987; Minton, 1989).

Keywords

Entropy Enthalpy Tyrosine Adenosine Polypeptide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, E. T., 1969, Chemically reacting systems of the type A + B ? AB. I. Sedimentation equilibrium of ideal solutions, Ann. N.Y. Acad. Sci. 164:226–244.Google Scholar
  2. Adams, E. T., 1992, Sedimentation coefficients of self-associating species. Analysis of monomer-dimer—n-mer associations and some indefinite self-associations, in: Analytical Ultracentrifugation in Biochemistry and Polymer Science (S. E. Harding, A. J. Rowe, and J. C. Horton, eds.), pp. 407–427, Royal Society of Chemistry, Cambridge.Google Scholar
  3. Adams, E. T., and Fujita, H., 1963, Sedimentation equilibrium in reacting systems, in: Ultracentrifugation in Theory and Experiment (J. W. Williams, ed.), pp. 119–129, Academic Press, New York.Google Scholar
  4. Adams, E. T., and Lewis, M. S., 1968, Sedimentation equilibrium in reacting systems. VI. Studies with ß-lactoglobulin A, Biochemistry 7:1044–1053.PubMedGoogle Scholar
  5. Adams, E. T., Tang, L.-H., Sarquis, J. L., Barlow, G. H., and Norman, W. M., 1978, Self-association in protein solutions, in: Physical Aspects of Protein Interactions (N. Catsimpoolas, ed.), pp. 1–55, Elsevier, Amsterdam.Google Scholar
  6. Ansevin, A. T., Roark, D. E., and Yphantis, D. A., 1970, Improved ultracentrifuge cells for high-speed sedimentation equilibrium studies with interference optics, Anal. Biochem. 34:237–261.PubMedGoogle Scholar
  7. Attri, A. K., and Minton, A. P., 1983, An automated method for determination of the molecular weight of macromolecules via sedimentation equilibrium in a preparative ultracentrifuge, Anal. Biochem. 133:142–152.PubMedGoogle Scholar
  8. Attri, A. K., and Minton, A. P., 1984, An automated method for the determination of the sedimentation coefficient of macromolecules using a preparative ultracentrifuge, Anal. Biochem. 136:407–415.PubMedGoogle Scholar
  9. Attri, A. K., and Minton, A. P., 1986, Technique and apparatus for automated fractionation of the contents of small centrifuge tubes: Application to analytical ultracentrifugation, Anal. Biochem. 152:319–328.PubMedGoogle Scholar
  10. Attri, A. K., Lewis, M. S., and Korn, E. D., 1991, The formation of actin oligomers studied by analytical ultracentrifugation, J. Biol. Chem. 266:6815–6824.PubMedGoogle Scholar
  11. Aune, K. C., and Timasheff, S. N., 1971, Dimerization of a-chymotrypsin. I. pH dependence in the acid region, Biochemistry 10:1609–1617.PubMedGoogle Scholar
  12. Aune, K. C., Goldsmith, L. C., and Timasheff, S. N., 1971, Dimerization of a-chymotrypsin. II. Ionic strength and temperature dependence, Biochemistry 10:1617–1622.PubMedGoogle Scholar
  13. Babul, J., and Stellwagen, E., 1969, Measurement of protein concentration with interference optics, Anal. Biochem. 28:216–221.PubMedGoogle Scholar
  14. Baldwin, R. L., 1957a, Boundary spreading in sedimentation velocity experiments. 4. Measurement of the standard deviation of a sedimentation coefficient distribution: Application to bovine albumin and ß-lactoglobulin, Biochem. J. 65:490–502.PubMedGoogle Scholar
  15. Baldwin, R. L., 1957b, Boundary spreading in sedimentation velocity experiments. 5. Measurement of the diffusion coefficient of bovine albumin by Fujita’s equation, Biochem. J. 65:503–512.PubMedGoogle Scholar
  16. Beckerdite, J. M., Wan, C. C., and Adams, E. T., 1980, Analysis of various indefinite self-associations of the AK type, Biophys. Chem. 12:199–214.PubMedGoogle Scholar
  17. Behlke, J., 1992, Disaggregation of the membrane protein P450 by detergents, in: Analytical Ultracentrifugation in Biochemistry and Polymer Science (S. E. Harding, A. J. Rowe, and J. C. Horton, eds.), pp. 484–494, Royal Society of Chemistry, Cambridge.Google Scholar
  18. Bloomfield, V. A., and Lim, T. K., 1978, Quasi-elastic laser light scattering, Methods Enzymol. 48:415–494.PubMedGoogle Scholar
  19. Cann, J. R., and Goad, W. B., 1973, Measurements of protein interactions mediated by small molecules using sedimentation velocity, Methods Enzymol. 27:296–306.PubMedGoogle Scholar
  20. Cantor, C. R., and Schimmel, P. R., 1980, Biophysical Chemistry, Freeman, San Francisco.Google Scholar
  21. Casassa, E. F., and Eisenberg, H., 1964, Thermodynamic analysis of multicomponent systems, Adv. Protein Chem. 19:287–395.PubMedGoogle Scholar
  22. Chatelier, R. C., and Minton, A. P., 1987, Sedimentation equilibrium in macromolecular solutions of arbitrary concentration. I. Self-associating proteins, Biopolymers 26:507–524.PubMedGoogle Scholar
  23. Chervenka, C. H., 1973, A Manual of Methods for the Analytical Ultracentrifuge, Spinco Division, Beckman Instruments, Palo Alto.Google Scholar
  24. Clarke, S., 1975, The size and detergent binding of membrane proteins, J. Biol. Chem. 250:5459–5469.PubMedGoogle Scholar
  25. Cleland, W. W., 1967, The statistical analysis of enzyme kinetic data, Adv. Enzymol. Relat. Areas Mol. Biol. 21:1–32.Google Scholar
  26. Cohn, E. J., and Edsall, J. T., 1943, Proteins, Amino Acids and Peptides as Ions and Dipolar Ions, pp. 370–381, Reinhold, New York.Google Scholar
  27. Cole, N., and Ralston, G. B., 1992, The effects of ionic strength on the self-association of human spectrin, Biochim. Biophys. Acta 1121:23–30.PubMedGoogle Scholar
  28. Correia, J. J., and Yphantis, D. A., 1992, Equilibrium sedimentation in short solution columns, in: Analytical Ultracentrifugation in Biochemistry and Polymer Science (S. E. Harding, A. J. Rowe, and J. C. Horton, eds.), pp. 231–252, Royal Society of Chemistry, Cambridge.Google Scholar
  29. Creeth, J. M., and Knight, C. G., 1965, On the estimation of the shape of macromolecules from sedimentation and viscosity measurements, Biochim. Biophys. Acta 102:549–558.PubMedGoogle Scholar
  30. Creeth, J. M., and Pain, R. H., 1967, The determination of molecular weights of biological macromolecules by ultracentrifuge methods, Prog. Biophys. Mol. Biol. 17:217–287.PubMedGoogle Scholar
  31. DeRosier, D. J., Munk, P., and Cox, D. J., 1972, Automatic measurement of interference photographs from the ultracentrifuge, Anal. Biochem. 50:139–153.PubMedGoogle Scholar
  32. Dunbar, J. C., and Ralston, G. B., 1981, Hydrodynamic characterization of the heterodimer of spectrin, Biochim. Biophys. Acta 667:177–184.PubMedGoogle Scholar
  33. Durchschlag, H., 1986, Specific volumes of biological macromolecules and some other molecules of biological interest, in: Thermodynamic Data for Biochemistry and Biotechnology (H.-J., Hinz, ed.), pp. 45–128, Springer-Verlag, Berlin.Google Scholar
  34. Edelstein, S. J., and Schachman, H. K., 1967, The simultaneous determination of partial specific volumes and molecular weights with microgram quantities, J. Biol. Chem. 242:306–311.PubMedGoogle Scholar
  35. Flörke, R.-R., Klein, H. W., and Rienauer, H., 1990, Structural requirements for signal transduction of the insulin receptor, Eur. J. Biochem. 191:473–482.PubMedGoogle Scholar
  36. Fujita, H., 1975, Foundations of Ultracentrifugal Analysis, Wiley, New York.Google Scholar
  37. Garcia de la Torre, J., 1992, Sedimentation coefficients of complex biological particles, in: Analytical Ultracentrifugation in Biochemistry and Polymer Science (S. E. Harding, A. J. Rowe, and J. C. Horton, eds.), pp. 333–345, Royal Society of Chemistry, Cambridge.Google Scholar
  38. Garcia de la Torre, J., and Bloomfield, V. A., 1978, Hydrodynamic properties of macromolecular complexes. IV. Intrinsic viscosity theory, with applications to once-broken rods and multi-subunit proteins, Biopolymers 17:1605–1627.Google Scholar
  39. Garrigos, M., Centeno, F., Deschamps, S., Moller, J. V., and le Maire, M., 1993, Sedimentation equilibrium of detergent-solubilized membrane proteins in the preparative ultracentrifuge, Anal. Biochem. 208:306–310.PubMedGoogle Scholar
  40. Giebeler, R., 1992, The Optima XL-A: A new analytical ultracentrifuge with a novel precision absorption optical system, in: Analytical Ultracentrifugation in Biochemistry and Polymer Science (S. E. Harding, A. J. Rowe, and J. C. Horton, eds.), pp. 16–25, Royal Society of Chemistry, Cambridge.Google Scholar
  41. Gilbert, L. M., and Gilbert, G. A., 1973, Sedimentation velocity measurement of protein association, Methods Enzymol. 27:273–296.PubMedGoogle Scholar
  42. Harding, S. E., and Rowe, A. J., 1983, Modeling biological macromolecules in solution. II. The general tri-axial ellipsoid, Biopolymers 22:1813–1829.PubMedGoogle Scholar
  43. Harding, S. E., and Rowe, A. J., 1984, Erratum. Modeling biological macromolecules in solution. II. The general tri-axial ellipsoid, Biopolymers 23:843.Google Scholar
  44. Harding, S. E., Horton, J. C., and Morgan, P. J., 1992, A FORTRAN program for the model independent molecular weight analysis of macromolecules using low speed or high speed sedimentation equilibrium, in: Analytical Ultracentrifugation in Biochemistry and Polymer Science (S. E. Harding, A. J. Rowe, and J. C. Horton, eds.), pp. 275–294, Royal Society of Chemistry, Cambridge.Google Scholar
  45. Haschemeyer, R. H., and Bowers, W. F., 1970, Exponential analysis of concentration or concentration difference data for discrete molecular weight distribution in sedimentation equilibrium, Biochemistry 9:435–445.PubMedGoogle Scholar
  46. Hoagland, V. D., and Teller, D. C., 1969, Influence of substrates on the dissociation of rabbit muscle D-glyceraldehyde 3-phosphate dehydrogenase, Biochemistry 8:594–602.PubMedGoogle Scholar
  47. Holloway, R. R., and Cox, D. J., 1974, Computer simulation of sedimentation in the ultracentrifuge. VII. Solutes undergoing indefinite self-association, Arch. Biochem. Biophys. 160:595–602.PubMedGoogle Scholar
  48. Holzenburg, A., Engel, A., Kessler, R., Manz, H. J., Lustig, A., and Aebi, U., 1989, Rapid isolation of OmpF porin-LPS complexes suitable for structure-function studies, Biochemistry 28:4187–4193.PubMedGoogle Scholar
  49. Horbett, T. A., and Teller, D. C., 1972, An experimental study of baseline reproducibility and its effect on high-speed sedimentation equilibrium data, Anal. Biochem. 45:86–99.PubMedGoogle Scholar
  50. Howlett, G. J., 1987, Air-driven ultracentrifuge for sedimentation equilibrium and binding studies, Methods Enzymol. 150:447–463.PubMedGoogle Scholar
  51. Howlett, G. J., 1992a, The preparative ultracentrifuge as an analytical tool, in: Analytical Ultracentrifugation in Biochemistry and Polymer Science (S. E. Harding, A. J. Rowe, and J. C. Horton, eds.), pp. 32–48, Royal Society of Chemistry, Cambridge.Google Scholar
  52. Howlett, G. J., 1992b, Sedimentation analysis of membrane proteins, in: Analytical Ultracentrifugation in Biochemistry and Polymer Science (S. E. Harding, A. J. Rowe, and J. C. Horton, eds.), pp. 470–483, Royal Society of Chemistry, Cambridge.Google Scholar
  53. Howlett, G. J., Birch, H., Dickson, P. W., and Schreiber, G., 1982a, Determination of the molecular weight of detergent-solubilized enzymes by sedimentation equilibrium in an air-driven ultra-centrifuge, Biochem. Biophys. Res. Commun. 105:895–901.PubMedGoogle Scholar
  54. Howlett, G. J., Dickson, P. W., Birch, H., and Schreiber, G., 1982b, Studies on 125I-labelled proteins in rat plasma using an air-driven ultracentrifuge: Protein-protein interactions and nonideality, Arch. Biochem. Biophys. 215:309–318.PubMedGoogle Scholar
  55. Howlett, G. J., Roche, P. J., and Schreiber, G., 1983, Protein-protein interactions: Analysis of the interaction of concanavalin A with serum glycoproteins by sedimentation equilibrium using an air-driven ultracentrifuge, Arch. Biochem. Biophys. 224:178–185.PubMedGoogle Scholar
  56. Hudson, G. S., Howlett, G. J., and Davidson, B. E., 1983, The binding of tyrosine and NAD+ to chorismate mutase/prephenate dehydrogenase from Escherichia coli K12 and the effects of these ligands on the activity and self-association of the enzyme. Analysis in terms of a model, J. Biol. Chem. 258:3114–3210.PubMedGoogle Scholar
  57. Husain, A., Howlett, G. J., and Sawyer, W. H., 1984, The interaction of calmodulin with human and avian spectrin, Biochem. Biophys. Res. Commun. 122:1194–1200.PubMedGoogle Scholar
  58. Hutchison, K. A., and Fox, I. H., 1989, Purification and characterization of the adenosine A2-like binding site from human placental membranes, J. Biol. Chem. 264:19898–19903.PubMedGoogle Scholar
  59. Jacques, Y., Le Mauff, B., Godard, A., Naulet, J., Concino, M., Marsh, H., Ip, S., and Soulillou, J.-P., 1990, Biochemical study of a recombinant soluble interleukin-2 receptor. Evidence for a homodimer structure, J. Biol. Chem. 265:20252–20258.PubMedGoogle Scholar
  60. Jeffrey, P. D., 1966, An equilibrium ultracentrifuge study of the self-association of bovine insulin, Biochemistry 5:489–498.PubMedGoogle Scholar
  61. Jeffrey, P. D., Nichol, L. W., and Teasdale, R. D., 1979, Studies of macromolecular heterogeneous associations involving cross-linking: A re-examination of the ovalbumin-lysozyme system, Biophys. Chem. 10:379–387.PubMedGoogle Scholar
  62. Johnson, M. L., and Yphantis, D. A., 1978, Subunit association and heterogeneity of Limulus polyphemus hemocyanin, Biochemistry 17:1448–1455.PubMedGoogle Scholar
  63. Johnson, M. L., Correia, J. J., Yphantis, D. A., and Halvorson, H. R., 1981, Analysis of data from the analytical ultracentrifuge by nonlinear least-squares techniques, Biophys. J. 36:575–588.PubMedGoogle Scholar
  64. Johnston, J. P., and Ogston, A. G., 1946, A boundary anomaly found in the ultracentrifugal sedimentation of mixtures, Trans. Faraday Soc. 42:789–799.Google Scholar
  65. Kam, Z., Josephs, R., Eisenberg, H., and Gratzer, W. B., 1977, Structural study of spectrin from human erythrocyte membrane, Biochemistry 16:5568–5572.PubMedGoogle Scholar
  66. Kim, H., Deonier, R. C., and Williams, J. W., 1977, The investigation of self-association reactions by equilibrium ultracentrifugation, Chem. Rev. 77:659–690.Google Scholar
  67. Kirschner, M. W., and Schachman, H. K., 1971, Conformational changes in proteins as measured by difference sedimentation studies. II. Effect of stereospecific ligands on the catalytic subunit of aspartate transcarbamylase, Biochemistry 10:1919–1926.PubMedGoogle Scholar
  68. Kratky, O., Leopold, H., and Stabinger, H., 1973, The determination of the partial specific volume of proteins by the mechanical oscillator technique, Methods Enzymol. 27:98–110.PubMedGoogle Scholar
  69. Kuchel, P. W., Campbell, D. G., Barclay, A. N., and Williams, A. F., 1978, Molecular weights of the Thy-1 glycoproteins from rat thymus and brain in the presence and absence of deoxycholate, Biochem. J. 169:411–417.PubMedGoogle Scholar
  70. Kumosinski, T. F., and Pessen, H., 1985, Structural determination of hydrodynamic measure-merits of proteins in solution through correlations with X-ray data, Methods Enzymol. 117:154–182.PubMedGoogle Scholar
  71. Kuntz, I. D., 1971, Hydration of macromolecules. III. Hydration of polypeptides, J. Am. Chem. Soc. 93:514–516.Google Scholar
  72. LaBar, F. E., 1965, A procedure for molecular weight measurements: Application to chymotryp-sinogen A, Proc. Natl. Acad. Sci. USA 54:31–36.PubMedGoogle Scholar
  73. Laue, T. M., 1992, On-line data acquisition and analysis from the Rayleigh interferometer, in: Analytical Ultracentrifugation in Biochemistry and Polymer Science (S. E. Harding, A. J. Rowe, and J. C. Horton, eds.), pp. 63–89, Royal Society of Chemistry, Cambridge.Google Scholar
  74. Laue, T. M., Johnson, A. E., Esmon, C. T., and Yphantis, D. A., 1984, Structure of bovine blood coagulation factor Va. Determination of the subunit associations, molecular weights, and asymmetries by analytical ultracentrifugation, Biochemistry 23:1339–1348.PubMedGoogle Scholar
  75. Laue, T. M., Shah, B. D., Ridgeway, T. M., and Pelletier, S. L., 1992, Computer-aided interpretation of analytical sedimentation data for proteins, in: Analytical Ultracentrifugation in Biochemistry and Polymer Science (S. E. Harding, A. J. Rowe, and J. C. Horton, eds.), pp. 90–125, Royal Society of Chemistry, Cambridge.Google Scholar
  76. Lavrenko, P. N., Linow, K. J., and Gornitz, E., 1992, The concentration dependence of the sedimentation coefficient of some polysaccharides in very dilute solution, in: Analytical Ultracentrifugation in Biochemistry and Polymer Science (S. E. Harding, A. J. Rowe, and J. C. Horton, eds.), pp. 517–531, Royal Society of Chemistry, Cambridge.Google Scholar
  77. Lee, J. C., and Timasheff, S. N., 1979, The calculation of partial specific volumes of proteins in 6M guanidine hydrochloride, Methods Enzymol. 61:49–57.PubMedGoogle Scholar
  78. Lee, J. C., Gekko, K., and Timasheff, S. N., 1979, Measurement of preferential solvent interactions by densimetric techniques, Methods Enzymol. 61:26–49.PubMedGoogle Scholar
  79. Lewis, M. S., 1992, Data acquisition and analysis systems for the absorption optical system of the analytical ultracentrifuge, in: Analytical Ultracentrifugation in Biochemistry and Polymer Science (S. E. Harding, A. J. Rowe, and J. C. Horton, eds.), pp. 126–137, Royal Society of Chemistry, Cambridge.Google Scholar
  80. Lewis, M. S., and Youle, R. J., 1986, Ricin subunit association, J. Biol. Chem. 261:11571–11577.PubMedGoogle Scholar
  81. Lindenthal, S., and Schubert, D., 1991, Monomeric erythrocyte band 3 transports anions, Proc. Natl. Acad. Sci. USA 88:6540–6544.PubMedGoogle Scholar
  82. Liu, S.-C., Derrick, L. H., and Palek, J., 1987, Visualization of the hexagonal lattice in the erythrocyte membrane skeleton, J. Cell Biol. 104:527–536.PubMedGoogle Scholar
  83. Luther, M. A., Cai, G.-Z., and Lee, J. C., 1986, Thermodynamics of dimer and tetramer formations in rabbit muscle phosphofructokinase, Biochemistry 25:7931–7937.PubMedGoogle Scholar
  84. Mächtle, W., 1988, Coupling particle size distribution technique, Angew. Makromol. Chem. 162:35–52.Google Scholar
  85. Mächtle, W., 1992, Analysis of polymer dispersions with an eight-cell-AUC-multiplexer: High resolution particle size distribution and density gradient techniques, in: Analytical Ultracentrifugation in Biochemistry and Polymer Science (S. E. Harding, A. J. Rowe, and J. C. Horton, eds.), pp. 147–175, Royal Society of Chemistry, Cambridge.Google Scholar
  86. Makino, S., Woolford, J. L., Tanford, C., and Webster, R. E., 1975, Interaction of deoxycholate and of detergents with the coat protein of bacteriophage f1, J. Biol. Chem. 250:4327–4332.PubMedGoogle Scholar
  87. Mayeux, P., Casadevall, N., Lacombe, C., Muller, O., and Tambourin, P., 1990, Solubilization and hydrodynamic characteristics of the erythropoietin receptor. Evidence for a multimeric complex, Eur. J. Biochem. 194:271–278.PubMedGoogle Scholar
  88. Milthorpe, B. K., Jeffrey, P. D., and Nichol, L. W., 1975, The direct analysis of sedimentation equilibrium results obtained with polymerizing systems, Biophys. Chem. 3:169–176.PubMedGoogle Scholar
  89. Minton, A. P., 1983, The effect of volume occupancy upon the thermodynamic activity of proteins: Some biochemical consequences, Mol. Cell. Biochem. 55:119–140.PubMedGoogle Scholar
  90. Minton, A. P., 1989, Analytical ultracentrifugation with preparative ultracentrifuges, Anal. Biochem. 176:209–216.PubMedGoogle Scholar
  91. Minton, A. P., 1990, Quantitative characterization of reversible molecular associations via analytical centrifugation, Anal. Biochem. 190:1–6.PubMedGoogle Scholar
  92. Morris, M., 1985, The self-association of human spectrin, Ph.D. thesis, University of Sydney.Google Scholar
  93. Morris, M., and Ralston, G. B., 1984, A reappraisal of the self-association of human spectrin, Biochim. Biophys. Acta 788:132–137.PubMedGoogle Scholar
  94. Morris, M., and Ralston, G. B., 1985, Determination of the parameters of self-association by direct fitting of the omega function, Biophys. Chem. 23:49–61.PubMedGoogle Scholar
  95. Morris, M., and Ralston, G. B., 1989, A thermodynamic model for the self-association of human spectrin, Biochemistry 28:8561–8567.PubMedGoogle Scholar
  96. Morris, S. A., and Kaufman, M., 1989, Ultracentrifugal analysis of the junction complexes of the red cell membrane cytoskeletal network: Application to hereditary spherocytosis and metabolically depleted cells. Blut 59:385–389.PubMedGoogle Scholar
  97. Mulzer, K., Kampmann, L., Petrasch, P., and Schubert, D., 1990, Complex associations between protein analyzed by analytical ultracentrifugation: Studies on the erythrocyte membrane proteins band 3 and ankyrin, Colloid Polym. Sci. 268:60–64.Google Scholar
  98. Munk, P., and Cox, D. J., 1972, Sedimentation equilibrium of protein solutions in concentrated guanidinium chloride. Thermodynamic nonideality and protein heterogeneity, Biochemistry 11:687–697.PubMedGoogle Scholar
  99. Muramatsu, N., and Minton, A. P., 1987, An automated method for rapid determination of diffusion coefficients via measurements of boundary spreading, Anal. Biochem. 168:345–351.Google Scholar
  100. Muramatsu, N., and Minton, A. P., 1989, Hidden self-association of proteins, J. Mol. Recog. 1:166–171.Google Scholar
  101. Newell, J. O., and Schachman, H. K., 1990, Amino acid substitutions which stabilize aspartate transcarbamylase in the R state disrupt both homotropic and heterotropic effects, Biophys. Chem. 37:183–196.PubMedGoogle Scholar
  102. Nichol, L. W., and Winzor, D. J., 1976, Allowance for composition dependence of activity coefficients in the analysis of sedimentation equilibrium results obtained with heterogeneously associating systems, J. Phys. Chem. 80:1980–1983.Google Scholar
  103. Nichol, L. W., and Winzor, D. J., 1985, The use of covolume in the estimation of protein axial ratio, Methods Enzymol. 117:182–198.PubMedGoogle Scholar
  104. Nichol, L. W., Jeffrey, P. D., and Milthorpe, B. K., 1976, The sedimentation equilibrium of heterogeneously associating systems and mixtures of noninteracting solutes: Analysis without determination of molecular weight averages, Biophys. Chem. 4:259–267.PubMedGoogle Scholar
  105. Nozaki, Y., Chamberlain, B. K., Webster, R. E., and Tanford, C., 1976a, Evidence for a major conformational change of coat protein in assembly of f1 bacteriophage, Nature 259:335–337.PubMedGoogle Scholar
  106. Nozaki, Y., Schechter, N. M., Reynolds, J. A., and Tanford, C., 1976b, Use of gel chromatography for the determination of the Stokes radii of proteins in the presence and absence of detergents. A reexamination. Biochemistry 15:3884–3890.PubMedGoogle Scholar
  107. Ogston, A. G., and Winzor, D. J., 1975, Treatment of thermodynamic nonideality in equilibrium studies on associating systems, J. Phys. Chem. 79:2496–2500.Google Scholar
  108. Paul, C. H., and Yphantis, D. A., 1972, Pulsed laser interferometry (PLI) in the analytical ultra-centrifuge: I. System design, Anal. Biochem. 48:588–604.PubMedGoogle Scholar
  109. Pederson, K. O., 1958, On charge and specific ion effects on sedimentation in the ultracentrifuge, J. Phys. Chem. 62:1282–1290.Google Scholar
  110. Pennica, D., Kohr, W. J., Fendly, B. M., Shire, S. J., Raab, H. E., Borchardt, P. E., Lewis, M., and Goeddel, D. V., 1992, Characterization of a recombinant extracellular domain of the type I tumor necrosis receptor: Evidence for the tumor necrosis factor-a induced receptor aggregation, Biochemistry 31:1134–1141.PubMedGoogle Scholar
  111. Persechini, A., and Rowe, A. J., 1984, Modulation of myosin filament conformation by physiological levels of divalent cations, J. Mol. Biol. 172:23–39.PubMedGoogle Scholar
  112. Pessen, H., and Kumosinki, T. F., 1985, Measurement of protein hydration by various techniques, Methods Enzymol. 117:219–255.PubMedGoogle Scholar
  113. Pilz, I., Glatter, O., and Kratky, O., 1979, Small-angle X-ray scattering, Methods Enzymol. 61:148–249.PubMedGoogle Scholar
  114. Pollet, R. J., 1985, Characterization of macromolecules by sedimentation equilibrium in the airturbine ultracentrifuge, Methods Enzymol. 117:3–27.PubMedGoogle Scholar
  115. Pollet, R. J., Haase, B. A., and Standaert, M. L., 1981, Characterization of detergent-solubilized membrane proteins. Hydrodynamic and sedimentation equilibrium properties of the insulin receptor of the cultured human lymphoblastoid cell, J. Biol. Chem. 256:12118–12126.PubMedGoogle Scholar
  116. Ralston, G. B., 1991, Temperature and pH-dependence of the self-association of human spectrin, Biochemistry 30:4179–4186.PubMedGoogle Scholar
  117. Ralston, G. B., and Morris, M. B., 1992, The use of the omega function for sedimentation equilibrium analysis, in: Analytical Ultracentrifugation in Biochemistry and Polymer Science (S. E. Harding, A. J. Rowe, and J. C. Horton, eds.), pp. 253–274, Royal Society of Chemistry, Cambridge.Google Scholar
  118. Ralston, G. B., Teller, D. C., and Bukowski, T., 1989, The use of metrizamide for stabilizing against convection in sedimentation equilibrium, Anal. Biochem. 178:198–201.PubMedGoogle Scholar
  119. Reynolds, J. A., and McCaslin, D. R., 1985, Determination of protein molecular weight in complexes with detergent without knowledge of binding, Methods Enzymol. 117:41–53.PubMedGoogle Scholar
  120. Reynolds, J. A., and Tanford, C., 1976, Determination of molecular weight of the protein moiety on the protein-detergent complex without direct knowledge of detergent binding, Proc. Natl. Acad. Sci. USA 73:4467–4470.PubMedGoogle Scholar
  121. Richards, E. G., and Schachman, H. K., 1959, Ultracentrifuge studies with Rayleigh interference optics. I. General applications, J. Phys. Chem. 63:1578–1591.Google Scholar
  122. Richards, J. H., and Richards, E. G., 1974, Light-difference detector for reading Rayleigh fringe patterns from the ultracentrifuge, Anal. Biochem. 62:523–530.PubMedGoogle Scholar
  123. Roark, D. E., and Yphantis, D. A., 1969, Studies of self-associating systems by equilibrium ultracentrifugation, Ann. N.Y. Acad. Sci. 164:245–278.PubMedGoogle Scholar
  124. Roark, D. E., and Yphantis, D. A., 1971, Equilibrium centrifugation of nonideal systems. The Donnan effect in self-associating systems, Biochemistry 10:3241–3249.PubMedGoogle Scholar
  125. Robinson, N. C., and Tanford, C., 1975, The binding of deoxycholate, Triton X-100, sodium dodecyl sulfate, and phosphatidylcholine vesicles to cytochrome b5, Biochemistry 14:369–378.PubMedGoogle Scholar
  126. Rogers, L. J., and Sykes, G. A., 1990, Conformational changes in Chondrus crispus flavodoxin on dissociation of FMN and reconstitution with flavin analogues, Biochem. J. 272:775–779.PubMedGoogle Scholar
  127. Rowe, A. J., 1977, The concentration dependence of transport processes: A general description applicable to sedimentation, translational diffusion, and viscosity coefficients of macromolecular solutes, Biopolymers 16:2595–2611.Google Scholar
  128. Rowe, A. J., 1992, The concentration dependence of sedimentation, in: Analytical Ultracentrifugation in Biochemistry and Polymer Science (S. E. Harding, A. J. Rowe, and J. C. Horton, eds.), pp. 394–406, Royal Society of Chemistry, Cambridge.Google Scholar
  129. Rowe, A. J., Jones, S. W., Thomas, D. G., and Harding, S. E., 1992, Methods for off-line analysis of sedimentation velocity and sedimentation equilibrium patterns, in: Analytical Ultracentrifugation in Biochemistry and Polymer Science (S. E. Harding, A. J. Rowe, and J. C. Horton, eds.), pp. 49–62, Royal Society of Chemistry, Cambridge.Google Scholar
  130. Runge, M. S., Laue, T. M., Yphantis, D. A., Lifsics, M. R., Saito, A., Altin, M., Reinke, K., and Williams, R. C., 1981, ATP-induced formation of an associated complex between microtubules and neurofilaments, Proc. Natl. Acad. Sci. USA 78:1431–1435.PubMedGoogle Scholar
  131. Sackett, D. L., Lippoldt, R. E., Gibson, C., and Lewis, M. S., 1989, Easily assembled digital data acquisition system for the analytical ultracentrifuge, Anal. Biochem. 180:319–325.PubMedGoogle Scholar
  132. Sardet, C., Tardieu, A., and Luzzati, V., 1976, Shape and size of bovine rhodopsin: A small-angle X-ray scattering study of a rhodopsin-detergent complex, J. Mol. Biol. 105:383–407.PubMedGoogle Scholar
  133. Schachman, H. K., 1951, Ultracentrifuge studies of tobacco mosaic virus, J. Am. Chem. Soc. 73:4808–4811.Google Scholar
  134. Schachman, H. K., 1959, Ultracentrifugation in Biochemistry, Academic Press, New York.Google Scholar
  135. Schachman, H. K., and Edelstein, S. J., 1973, Ultracentrifugal studies with absorption optics and a split-beam photoelectric scanner, Methods Enzymol. 27:3–59.PubMedGoogle Scholar
  136. Schmidt, B., Rappold, W., Rosenbaum, V., Fischer, R., and Riesner, D., 1990, A fluorescence detection system for the analytical ultracentrifuge and its application to proteins, nucleic acids, and viruses, Colloid Polym. Sci. 268:45–54.Google Scholar
  137. Schuck, P., and Schubert, D., 1991, Band 3-haemoglobin associations. The band 3 tetramer is the oxyhaemoglobin binding site, FEBS Lett. 293:81–84.PubMedGoogle Scholar
  138. Shahbakhti, F., and Gratzer, W. B., 1986, Analysis of the self-association of human red cell spectrin, Biochemistry 25:5969–5975.PubMedGoogle Scholar
  139. Siegel, L. M., and Monty, K. J., 1966, Determination of molecular weights and frictional ratios of proteins in impure systems by use of gel filtration and density gradient centrifugation. Application to crude preparations of sulfite and hydroxylamine reductases, Biochim. Biophys. Acta 112:346–362.PubMedGoogle Scholar
  140. Simons, K., Helenius, A., and Garoff, H., 1973, Solubilization of the membrane proteins from Semliki Forest virus with Triton X100, J. Mol. Biol. 80:119–133.PubMedGoogle Scholar
  141. Smigel, M., and Fleischer, S., 1977, Characterization of Triton X-100-solubilized prostaglandin E binding protein of rat liver plasma membrane, J. Biol. Chem. 252:3689–3696.PubMedGoogle Scholar
  142. Smith, B. L., and Agre, P., 1991, Erythrocyte M, 28,000 transmembrane protein exists as a multisubunit oligomer similar to channel proteins, J. Biol. Chem. 266:6407–6415.PubMedGoogle Scholar
  143. Smith, G. D., and Schachman, H. K., 1973, Effect of D2O and NAD on the sedimentation properties and structure of glyceraldehyde phosphate dehydrogenase, Biochemistry 12:3789–3801.PubMedGoogle Scholar
  144. Stafford, W. F., 1992a, Methods for obtaining sedimentation coefficient distributions, in: Analytical Ultracentrifugation in Biochemistry and Polymer Science (S. E. Harding, A. J. Rowe, and J. C. Horton, eds.), pp. 359–393, Royal Society of Chemistry, Cambridge.Google Scholar
  145. Stafford, W. F., 1992b, Boundary analysis in sedimentation transport experiments: A procedure for obtaining sedimentation coefficient distributions using the time derivative of the concentration profile, Anal. Biochem. 203:295–301.PubMedGoogle Scholar
  146. Steer, C. J., Osborne, J. C., and Kempner, E. S., 1990, Functional and physical molecular size of the chicken hepatic lectin determined by radiation inactivation and sedimentation equilibrium analysis, J. Biol. Chem. 265:3744–3749.PubMedGoogle Scholar
  147. Svedberg, T., and Fâhraeus, R., 1926, A new method for the determination of the molecular weight of the proteins, J. Am. Chem. Soc. 48:430–438.Google Scholar
  148. Svedberg, T., and Pederson, K. O., 1940, The Ultracentrifuge, Oxford University Press, London.Google Scholar
  149. Tanford, C., 1961, Physical Chemistry of Macromolecules, Wiley, New York.Google Scholar
  150. Tanford, C., and Reynolds, J. A., 1976, Characterization of membrane proteins in detergent solutions, Biochim. Biophys. Acta 457:133–170.PubMedGoogle Scholar
  151. Tellam, R. L., Sculley, M. J., and Nichol, L. W., 1983, The influence of polyethylene glycol) 6000 on the properties of skeletal-muscle actin, Biochem. J. 213:651–659.PubMedGoogle Scholar
  152. Teller, D. C., 1967, Modification of the Nikon microcomparator for accurate reading of Rayleigh interference patterns, Anal. Biochem. 19:256–264.PubMedGoogle Scholar
  153. Teller, D. C., 1973, Characterization of proteins by sedimentation equilibrium in the analytical ultracentrifuge, Methods Enzymol. 27:346–441.PubMedGoogle Scholar
  154. Teller, D. C., 1976, Accessible area, packing volumes and interaction surfaces of globular proteins, Nature 260:729–731.PubMedGoogle Scholar
  155. Tirado, M. M., and Garcia de la Torre, J., 1979, Translational friction coefficients of rigid, symmetric top macromolecules. Application to circular cylinders, J. Chem. Phys. 71:2581–2587.Google Scholar
  156. Townend, R., Weinberger, L., and Timasheff, S. N., 1960, Molecular interactions in ß-lactoglobulin. IV. The dissociation of ß-lactoglobulin below pH 3.5, J. Am. Chem. Soc. 82:3175–3179.Google Scholar
  157. Trautman, R., 1964, Ultracentrifugation, in: Instrumental Methods of Experimental Biology (D. W. Newman, ed.), pp. 211–297, Macmillan Co., New York.Google Scholar
  158. Ullrich, A., Bell, J. R., Chen, E. Y., Herrera, R., Petruzzelli, L. M., Dull, T. J., Gray, A., Coussens, L., Liao, Y.-C., Tsubokawa, M., Mason, A., Seeburg, P. H., Grunfield, C., Rosen, O. M., and Ramachandran, J., 1985, Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes, Nature 313:756–761.PubMedGoogle Scholar
  159. Ungewickell, E., and Gratzer, W., 1978, Self-association of human spectrin. A thermodynamic and kinetic study, Eur. J. Biochem. 88:379–385.PubMedGoogle Scholar
  160. Van Holde, K. E., 1967, Sedimentation equilibrium, in: Fractions, Vol. 1, pp. 1–10, Beckman Instruments, Palo Alto.Google Scholar
  161. Van Holde, K. E., 1971, Physical Biochemistry, Prentice-Hall, Englewood Cliffs, N.J.Google Scholar
  162. Van Holde, K. E., 1975, Sedimentation analysis of proteins, in: The Proteins, 3rd ed., Vol. 1 (H. Neurath and R. L. Hill, eds.), pp. 225–291, Academic Press, New York.Google Scholar
  163. Williams, J. W., and Saunders, W. M., 1954, Size distribution analysis in plasma extender systems. II. Dextran, J. Phys. Chem. 58:854–859.Google Scholar
  164. Wills, P. R., and Winzor, D. J., 1992, Thermodynamic non-ideality and sedimentation equilibrium, in: Analytical Ultracentrifugation in Biochemistry and Polymer Science (S. E. Harding, A. J. Rowe, and J. C. Horton, eds.), pp. 311–330, Royal Society of Chemistry, Cambridge.Google Scholar
  165. Wills, P. R., Nichol, L. W., and Siezen, R. J., 1980, The indefinite self-association of lysozyme: Consideration of composition-dependent activity coefficients, Biophys. Chem. 11:71–82.PubMedGoogle Scholar
  166. Wills, P. R., Comper, W. D., and Winzor, D. J., 1993, Thermodynamic nonideality in macro-molecular solutions: Interpretations of virial coefficients, Arch. Biochem. Biophys. 300:206–212.PubMedGoogle Scholar
  167. Winzor, D. J., Tellam, R., and Nichol, L. W., 1977, Determination of the asymptotic shapes of sedimentation velocity patterns for reversibly polymerizing solutes, Arch. Biochem. Biophys. 178:327–332.PubMedGoogle Scholar
  168. Yeager, M., Schoenborn, B., Engelman, D., Moore, P., and Stryer, L., 1976, Neutron scattering analysis of the shape, molecular weight and amphipathic structure of an intrinsic membrane protein: Rhodopsin, Biophys. J. 16:36a.Google Scholar
  169. Yphantis, D. A., 1960, Rapid determination of molecular weights of peptides and proteins, Ann. N.Y. Acad. Sci. 88:586–601.Google Scholar
  170. Yphantis, D. A., 1964, Equilibrium ultracentrifugation in dilute solutions, Biochemistry 3:297–317.PubMedGoogle Scholar
  171. Yphantis, D. A., 1980, Pulsed laser interferometry in the ultracentrifuge, Methods Enzymol. 61:3–12.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Michael B. Morris
    • 1
  • Gregory B. Ralston
    • 1
  1. 1.Department of BiochemistryThe University of SydneySydneyAustralia

Personalised recommendations