Skip to main content

Molecular Mechanisms Responsible for Repair of Adducts Induced in Human Cellular DNA by Puva

  • Chapter
  • 78 Accesses

Part of the book series: NATO ASI Series ((NSSA,volume 265))

Abstract

Psoralen plus UVA (long wavelength ultraviolet radiation) (PUVA) produces three types of adducts in DNA: (i) intercalation of the psoralen molecule between flat, stacked base-pairs, (ii) formation of a monoadduct by UVA radiation-dependent covalent bonding of the psoralen molecule to a base, primarily via a cyclobutane ring to a thymine, on one strand of the DNA, and (iii) formation of a DNA interstrand cross-link by a second UVA radiation-dependent covalent bonding of the psoralen molecule to a base on the opposite strand of the DNA molecule. The latter adduct (iii) is thought to be the most important biologically.

We have isolated two DNA endonuclease complexes from the chromatin of normal human lymphoblastoid cells. One complex, pI 4.6, recognizes and selectively cleaves DNA containing the psoralen intercalation adduct and also the psoralen interstrand DNA cross-link, against which it has the greater activity. The other complex, pI 7.6, recognizes and cleaves the cyclobutane ring psoralen-DNA monoadduct. It also recognizes and cleaves the ultraviolet radiation (254nm;UVC) induced pyrimidine dimer, which has a similar cyclobutane ring structure. Kinetic analysis of activities of the endonuclease complexes on DNA treated with PUVA so as to favor cross-link production reveals a reduced Km, with little or no change in Kcat or Vmax, indicating an increased affinity, or rate of association, of these enzyme complexes for the damaged DNA. Both complexes contain at least two proteins, one of which is necessary for interaction of the complex with DNA in the form of chromatin, the other(s) of which recognizes the adduct and also cleaves the phosphodiester bond of the DNA molecule. The former protein is defective in cells derived from patients with xeroderma pigmentosum, complementation group A, whereas the latter is defective in the complex, pI 4.6, in cells derived from patients with Fanconi anemia (FA), complementation group A, and in the complex, pI 7.6, in cells derived from patients with FA, complementation group B. Kinetic analysis reveals that all of these deficiencies are due to reduced selective affinity, or rate of association, of the enzyme complexes for their respective damaged nucleosomal or non-nucleosomal DNA substrates. The deficiencies in the mutant cell repair systems correlate with increased sensitivities of these cells to DNA damaging agents in culture, and these hypersensitivities can be corrected by introduction, via electroporation, of the corresponding normal DNA endonuclease complexes into these cultured cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amari NMB, WC Lambert and MW Lambert, 1986. Comparison of histones in normal and xeroderma pigmentosum lymphoblastoid cells. Cell. Biol. Intl. Repts., 10: 875–880.

    Article  CAS  Google Scholar 

  • Auerbach AD and SK Wolman, 1976. Susceptibility of Fanconi’s anemia fibroblasts to chromosome damage by carcinogens. Nature (London), 261, 494–496.

    Article  CAS  Google Scholar 

  • Auerbach AD, A Rogatko and TM Schroeder Kurth, 1989. International Fanconi Anemia Registry: Relation of clinical symptoms to diepoxybutane sensitivity. Blood, 73: 391–396.

    PubMed  CAS  Google Scholar 

  • Averbeck D, D Papadopoulo and E Moustacchi, 1988. Repair of 4,5′8-trimethylpsoralen plus light-induced DNA damage in normal and Fanconi’s anemia cells. Cancer Res., 48: 2015–2020.

    PubMed  CAS  Google Scholar 

  • Ben-Hur E, and MM Elkind, 1973. Psoralen plus near ultraviolet light inactivation of cultured Chinese hamster cells and its relation to DNA cross-links. Mutation Res., 18: 315–324.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Hur E and P-S Song, 1984. The photochemistry and photobiology of furocoumarins (psoralens). Adv. Radiat. Biol., 11: 131–177.

    CAS  Google Scholar 

  • Bohr VA, DH Phillips and PC Hanawalt, 1987. Heterogeneous DNA damage and repair in the mammalian genome. Cancer Res., 47: 6426–6436.

    PubMed  CAS  Google Scholar 

  • Bredberg A, 1982. Genetic toxicity of psoralen and ultraviolet radiation in human cells. Acta Dennato-Venereol., 104: 1–4.

    CAS  Google Scholar 

  • Bredberg A, B Lambert and S Soderhall, 1982. Induction and repair of psoralen cross-links in DNA of normal human and xeroderma pigmentosum fibroblasts. Mutation Res., 93: 221–234.

    Article  PubMed  CAS  Google Scholar 

  • Buchwald M, J Ng, C Clarke and G Duckworth Rysiecki, 1987. Studies of gene transfer and reversion to mitomycin C resistance in Fanconi anemia cells. Mutation Res., 184: 153–159.

    Article  PubMed  CAS  Google Scholar 

  • Cerutti P, M Kaneko and P Beard, 1980. Nucleosomal structure of chromatin: Distribution and excision of DNA damage, In: E. Seeberg and K. Kleepe, Eds., Chromosome Damage and Repair, Plenum Press, New York. pp. 49–61.

    Google Scholar 

  • Cimino GD, HB Gamper, ST Isaacs and JE Hearst, 1985. Psoralens as photoactive probes of nucleic acid structure and function: Organic chemistry, photochemistry. Annu. Rev. Biochem., 54: 1151–1193.

    Article  PubMed  CAS  Google Scholar 

  • Cleaver, J.E., 1990. Do we know the cause of xeroderma pigmentosum? Carcinogenesis, 11: 875–882.

    Article  PubMed  CAS  Google Scholar 

  • Cleaver JE, and KH Kraemer, 1989. Xeroderma pigmentosum. In: McKusick, V., Ed. The Metabolic Basis of Inherited Disease, 6th ed., McGraw Hill, New York, pp. 2949–2971.

    Google Scholar 

  • Davie JR, L Numerow and GP Delcuve, 1986. The nonhistone chromosomal protein, H2A-specific protease, is selectively associated with nucleosomes containing histone H1. J. Biol. Chem., 261: 10410–10416.

    PubMed  CAS  Google Scholar 

  • Dean SW, 1989. Repair of 8-methoxypsoralen + UVA — induced damage in specific sequences in chromosomal and episomal DNA in human cells. Carcinogenesis, 10: 1253–1256.

    Article  PubMed  CAS  Google Scholar 

  • de Jonge AJR, W Vermeiden, B Klein and JHJ Hoeijmakers, 1983. Microinjection of human cells extracts corrects xeroderma pigmentosum defect. EMBO J., 2: 637–641.

    PubMed  Google Scholar 

  • Digweed M and K Sperling, 1989. Identification of a HeLa mRNA fraction which can correct the DNA-repair defect in Fanconi anaemia fibroblasts. Mutation Res., 218: 171–177.

    Article  PubMed  CAS  Google Scholar 

  • Digweed M, S Zakrzewski-Ludcke and K Sperling, 1988. Fanconi’s anaemia: Correlation of genetic complementation group with psoralen/UVA response. Human Genet., 78: 51–54.

    Article  CAS  Google Scholar 

  • Duckworth-Rysiecki G, K Cornish, CA Clarke and M Buchwald, 1985. Identification of two complementation groups in Fanconi’s anemia. Somatic Cell Mol. Genet., 11: 35–41.

    Article  CAS  Google Scholar 

  • Elia MC and EN Moudrianakis, 1988. Regulation of H2A-specific proteolysis by histone H3: H4 tetramer. J. Biol. Chem., 263: 9958–9964.

    PubMed  CAS  Google Scholar 

  • Fanconi G, 1967. Familial constitutional panmyelocytopathy, In: Fanconi’s anemia I, Clinical Aspects. Semin. Hematol., 4: 233–240.

    PubMed  CAS  Google Scholar 

  • Fornace AJ, Jr, JB Little and RR Weichselbaum, 1979. DNA repair in Fanconi’s anemia fibroblast cell strain. Biochim. Biophys. Acta, 561: 99–109.

    Article  PubMed  CAS  Google Scholar 

  • Freifelder D, 1983. In: C.I. Daven, Ed., Molecular Biology, A Comprehensive Introduction to Procaryotes and Eukaryotes, Jones and Bartlett, Boston, MA, pp. 132–136.

    Google Scholar 

  • Fujiwara Y, 1982. Defective repair of mitomycin C cross-links in Fanconi’s anemia and loss in confluent normal human and xeroderma pigmentosum cells. Biochem. Biophys. Acta, 699: 217–225.

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara Y, M Tatsumi and MS Sasaki, 1977. Cross-link repair in human cells and its possible defect in Fanconi’s anemia cells. J. Mol. Biol., 113: 635–649.

    Article  PubMed  CAS  Google Scholar 

  • German J, 1982. Genes which increase chromosomal instability in somatic cells and predispose to cancer. Prog. Med. Genet., 8: 61–101.

    Google Scholar 

  • Gia O, G Palu, M Palumbo, C Antonello and S Marciani Magno, 1987. Photoreaction of psoralen derivatives with structurally organized DNA. Photochem. Photobiol., 45: 87–92.

    Article  PubMed  CAS  Google Scholar 

  • Glanz A, and FC Fraser, 1982. Spectrum of anomalies in Fanconi anemia. J. Med. Genet., 19: 412–416.

    Article  PubMed  CAS  Google Scholar 

  • Grossman L, PR Caron, SJ Mazur and EY Oh, 1988. Repair of DNA-containing pyrimidine dimers. FASEB J., 2: 2696–2701.

    PubMed  CAS  Google Scholar 

  • Gruenert DC and JE Cleaver, 1985. Repair of psoralen induced cross-links and monoadducts in normal and repair-deficient human fibroblasts. Cancer Res., 45: 5399–5404.

    PubMed  CAS  Google Scholar 

  • Hanawalt P, IM Mellon, D Scicchitano and G Spivak, 1989. Relationships between DNA repair and transcription in defined DNA sequences in mammalian cells, In: M.W. Lambert and J. Laval Eds., DNA Repair Mechanisms and Their Biological Implications in Mammalian Cells, Plenum Press, New York, pp. 325–337.

    Chapter  Google Scholar 

  • Hang B, Yeung AT and Lambert MW, 1993. A damage-recognition protein which binds to DNA containing interstrand cross-links is absent or defective in Fanconi anemia, complementation group A, cells. Nucl. Acids Res., 21: 4187–4192.

    Article  PubMed  CAS  Google Scholar 

  • Hittelman WN, 1986. Visualization of chromatin events during DNA excision repair in XP cells: Deficiency in localized but not generalized chromatin events. Carcinogenesis, 7: 1975–1980.

    Article  PubMed  CAS  Google Scholar 

  • Hough PVC, IA, Mastrangelo, JS Wall, JF Hainfield, MN Simon and JL Manley, 1982. DNA protein complexes spread on N2-discharged carbon film and characterized by molecular weight and its projected distribution. J. Mol. Biol., 160: 375–386.

    Article  PubMed  CAS  Google Scholar 

  • Igo-Kemenes T, W Horz and HG Zachau, 1982. Chromatin. Annu. Rev. Biochem., 51: 89–121.

    Article  PubMed  CAS  Google Scholar 

  • Ishida R and M Buchwald, 1982. Susceptibility of Fanconi’s anemia lymphoblasts to DNA-cross-linking and alkylating agents. Cancer Res., 42: 4000–4006.

    PubMed  CAS  Google Scholar 

  • Ishimi Y, Y Ohba, H Yasuda and M Yamada, 1981. The interaction of H1 histone with nucleosome core. J. Biochem., 89: 1881–1888.

    PubMed  CAS  Google Scholar 

  • Kano Y and Y Fujiwara, 1982. Higher inductions of twin and single sister chromatid exchanges by cross-linking agents with Fanconi’s anemia cells. Hum. Genet., 60: 233–238.

    Article  PubMed  CAS  Google Scholar 

  • Kano Y and Y Fujiwara, 1983. Defective thymine dimer excision from xeroderma pigmentosum chromatin and its characteristic catalysis by cell-free extracts. Carcinogenesis, 4: 1419–1424.

    Article  PubMed  CAS  Google Scholar 

  • Kaye J, CA Smith and PC Hanawalt, 1980. DNA repair in human cells containing photoadducts of 8-methoxypsoralen or angelicin. Cancer Res., 40: 696–702.

    PubMed  CAS  Google Scholar 

  • Kaysen JH, 1984. The influence of nucleosomes on apurinic/apyrimidinic DNA endonuclease activities from normal human and xeroderma pigmentosum lymphoblastoid cells, Doctoral Thesis, UMDNJ, Newark, NJ.

    Google Scholar 

  • Kaysen JH, NMB Amari and MW Lambert, 1986. Enhancement of two apurinic/apyrimidinic endonuclease activities from normal but not xeroderma pigmentosum lymphoblastoid cells by nucleosome structure. Mutation Res., 165: 221–231.

    Article  PubMed  CAS  Google Scholar 

  • Kaysen JH, NMB Amari and MW Lambert, 1987. Positioning of nucleosomes reconstituted with xeroderma pigmentosum and normal histones. Cell. Biol. Intl. Repts., 11: 95–101.

    Article  CAS  Google Scholar 

  • Klingholz R and WH Stratling, 1982. Reassociation of histone H1 to Hl-depleted polynucleosomes. J. Biol. Chem., 257: 13101–13107.

    PubMed  CAS  Google Scholar 

  • Kraemer KH, MM Lee and J Scotto, 1987. Xeroderma pigmentosum: cutaneous, ocular, and neurologic abnormalities in 830 published cases. Arch. Dermatol., 123: 241–250.

    Article  PubMed  CAS  Google Scholar 

  • Lalt SA, E Stetten, LA Juergens, GR Buchanan and PS Gerald, 1975. Induction by alkylating agents of sister-chromatid exchanges and chromatid breaks in Fanconi’s anemia. Proc. Natl. Acad. Sci. (U.S.A.), 72: 4066–4070.

    Article  Google Scholar 

  • Lambert WC and MW Lambert, 1985. Co-recessive inheritance: A model for DNA repair, genetic disease and carcinogenesis. Mutation Res., 145: 227–234.

    Article  PubMed  CAS  Google Scholar 

  • Lambert WC and MW Lambert, 1986. Non-Poisson analysis of DNA endonucleases with sequence substrate specificities. Gene Anal. Tech., 3: 75–77.

    Article  CAS  Google Scholar 

  • Lambert WC and MW Lambert, 1987. DNA repair deficiency and cancer in xeroderma pigmentosum. Cancer Rev., 7: 56–81.

    Google Scholar 

  • Lambert WC and MW Lambert, 1989. Co-recessive inheritance: A model for diseases associated with defective DNA repair, In: M. W. Lambert and J. Laval, Eds., DNA Repair Mechanisms and Their Biological Implications in Mammalian Cells, Plenum Press, New York, pp., 399–428.

    Chapter  Google Scholar 

  • Lambert WC, and MW Lambert, 1992. Co-recessive inheritance: A model for surveillance genes in higher eukaryotes. Mutation Res., 273: 179–192.

    Article  PubMed  CAS  Google Scholar 

  • Lambert MW, D Fenkart and M Clarke, 1988. Two DNA endonuclease activities from normal human and xeroderma pigmentosum chromatin active on psoralen plus ultraviolet light treated DNA. Mutation Res., 193: 65–73.

    Article  PubMed  CAS  Google Scholar 

  • Lambert MW, DE Lee, AO Okorodudu and WC Lambert, 1982. Nuclear deoxyribonuclease activities in human lymphoblastoid and mouse melanoma cells: A comparative study. Biochim. Biophys. Acta., 69: 192–203.

    Google Scholar 

  • Lambert WC, DD Parrish, D Fenkart, H-R Kuo, J Kovacs and MW Lambert, 1993. A new system for analysis of enzyme kinetics data applicable to complex macromolecular interactions. Clin. Res., 41: 441A.

    Google Scholar 

  • Lambert MW, WC Lambert and AO Okorodudu, 1983. Nuclear DNA endonuclease activities on partially apurinic/apyrimidinic DNA in normal human and xeroderma pigmentosum lymphoblastoid cells and mouse melanoma cells. Chem.-Biol. Interact., 46: 109–120.

    Article  PubMed  CAS  Google Scholar 

  • Lambert MW and DD Parrish, 1989. Modulation of activity of human chromatin-associated endonucleases on damaged DNA by nucleosome structure, In: M.W. Lambert and J. Laval, Eds., DNA Repair Mechanisms and Their Biological Implications in Mammalian Cells, Plenum Press, New York, pp. 295–324.

    Chapter  Google Scholar 

  • Lambert MW, GJ Tsongalis, WC Lambert, B Hang and DD Parrish, 1992. Defective DNA endonuclease activities in Fanconi’s anemia cells, complementation groups A and B. Mutation Res., 273: 57–71.

    Article  PubMed  CAS  Google Scholar 

  • Lan SY and MJ Smerdon, 1985. A nonuniform distribution of excision repair synthesis in nucleosome DNA. Biochemistry, 24: 7771–7783.

    Article  PubMed  CAS  Google Scholar 

  • Leadon SA and MM Snowden, 1988. Differential repair of DNA damage in human metallothionein gene family. Mol. Cell. Biol., 8: 5331–5338.

    PubMed  CAS  Google Scholar 

  • Manley JL, A Fire, A Cano, PA Sharp and ML Gefter, 1980. DNA-dependent transcription of adenovirus genes in a soluble whole-cell extract. Proc. Natl. Acad. Sci. (U.S.A.), 77: 3855–3859.

    Article  CAS  Google Scholar 

  • Matsumoto A, JMH Vos and PC Hanawalt, 1989. Repair analysis of mitomycin C-induced DNA cross-linking in ribosomal RNA genes in lymphoblastoid cells from Fanconi’s anemia patients. Mutation Res., 217: 185–192.

    Article  PubMed  CAS  Google Scholar 

  • McGhee JD and G Felsenfeld, 1980. Nucleosome structure. Annu. Rev. Biochem., 49: 1115–1156.

    Article  PubMed  CAS  Google Scholar 

  • Mellon IM, VA Bohr, CA Smith and PC Hanawalt, 1986. Preferential DNA repair of an active gene in human cells. Proc. Natl. Acad. Sci. (U.S.A.), 83: 8878–8882.

    Article  CAS  Google Scholar 

  • Mortelmans K, EC Friedberg, H Slor, G Thomas and JE Cleaver, 1976. Defective thymine dimer excision by cell-free extracts of xeroderma pigmentosum cells. Proc. Natl. Acad. Sci. (U.S.A.), 73: 2757–2761.

    Article  CAS  Google Scholar 

  • Moustacchi E, D Papadopoulo, C Diatloff-Zito and M Buchwald, 1987. Two complementation groups of Fanconi’s anemia differ in their phenotype response to a DNA-crosslinking treatment. Human Genet., 75: 45–47.

    CAS  Google Scholar 

  • Moustacchi E, D Papadopoulo, D Averbeck, D Fraser and C Diatloff Zito, 1989. Processing of photoinduced cross-links and monoadducts in human cell DNA: Genetic and molecular features, In: M.W. Lambert and J. Laval Eds., DNA Repair Mechanisms and Their Biological Implications in Mammalian Cells, Plenum Press, New York, pp. 471–482.

    Chapter  Google Scholar 

  • Mullenders LHF, AC van Kesteren, CJM Bussmann, AA van Zeeland, and AT Natarajan, 1986. Distribution of U.V.-induced repair events in higher-order chromatin loops in human and hamster fibroblasts. Carcinogenesis, 7: 995–1002.

    Article  PubMed  CAS  Google Scholar 

  • Mullenders, LHF, J Venema, L Mayne, A T Natarajan and AA van Zeeland, 1989. Non-random distribution of UV-induced repair in higher-order chromatin loops in human cells and its relationship to preferential repair of active genes, In: M.W. Lambert and J. Laval, Eds., DNA Repair Mechanisms and Their Biological Implications in Mammalian Cells, Plenum Press, New York, pp., 339–348.

    Chapter  Google Scholar 

  • Okorodudu AO, WC Lambert and MW Lambert, 1982. Nuclear deoxyribonuclease activities in normal and xeroderma pigmentosum lymphoblastoid cells. Biochem. Biophys. Res. Commun., 108: 576–584.

    Article  PubMed  CAS  Google Scholar 

  • Owen DK and A Sancar, 1989. The (A)BC exinuclease of Escherichia coli has only the UvrB and UvrC subunits in the incision complex. Proc. Natl. Acad. Sci. (U.S.A.), 86, 5237–5241

    Article  Google Scholar 

  • Papadopoulo D, D Averbeck and E Moustacchi, 1987. The fate of 8-methoxypsoralen-photo-induced DNA interstrand crosslinks in Fanconi’s anemia cells of defined genetic complementation groups. Mutation Res., 184: 271–280.

    Article  PubMed  CAS  Google Scholar 

  • Parrish DD and MW Lambert, 1990. Chromatin-associated DNA endonucleases from xeroderma pigmentosum cells are defective in interaction with damaged nucleosomal DNA. Mutation Res., 235: 65–80.

    Article  PubMed  CAS  Google Scholar 

  • Parrish DD, WC Lambert and MW Lambert, 1992. Xeroderma pigmentosum endonuclease complexes show reduced activity on and affinity for psoralen cross-linked nucleosomal DNA. Mutation Res., 273: 157–170.

    Article  PubMed  CAS  Google Scholar 

  • Plooy ACM, M van Dijk, F Berends and PHM Lohman, 1985. Formation and repair of DNA interstrand crosslinks in relation to cytotoxicity and unscheduled DNA synthesis induced in control and mutant human cells treated with cis-diamminedichloroplatinum (II). Cancer Res., 45: 4178–4184.

    PubMed  CAS  Google Scholar 

  • Poll EHA, F Arwert, HT Kortbeek and AW Eriksson, 1984. Fanconi anemia cells are not uniformly deficient in unhooking of DNA interstrand crosslink induced by Mitomycin C or 8-methoxypsoralen plus UVA. Human Genet., 68: 228–234.

    Article  CAS  Google Scholar 

  • Rinaldy A, T Bellew, T Egli and RS Lloyd, 1990. Increased UV resistance in xeroderma pigmentosum group A cells after transformation with a human genomic DNA clone. Proc. Natl. Acd. Sci. U.S.A., 87: 6818–6822.

    Article  CAS  Google Scholar 

  • Sancar A and GB Sancar, 1988. DNA repair enzymes. Anmi. Rev. Biochem., 51: 29–68.

    Article  Google Scholar 

  • Santella RM, N Dharmaraja, FP Gasparro and RL Edelson, 1985. Monoclonal antibodies to DNA modified by 8-methoxypsoralen and ultraviolet A light. Nucl. Acids Res., 13: 2533–2544.

    Article  PubMed  CAS  Google Scholar 

  • Sasaki MS, and A Tonomura, 1973. A high susceptibility of Fanconi’s anemia to chromosome breakage by DNA cross-linking agent. Cancer Res., 33: 1829–1836.

    PubMed  CAS  Google Scholar 

  • Satokota I, K Tanaka, N Miura, I Miyamoto, Y Satoh, S Kondo and Y Okada, 1990. Characterization of a splicing mutation in group A xeroderma pigmentosum. Proc. Natl. Acad. Sci. (U.S.A), 87: 9908–9912.

    Article  Google Scholar 

  • Schroeder TM, 1982. Genetically determined chromosome instability syndromes. Cytogenet. Cell Genet., 33: 129–132.

    Article  Google Scholar 

  • Shaham M, B Adler, S Ganguly and RSK Chaganti, 1987. Transfection of normal human and Chinese hamster DNA corrects diepoxybutane-induced chromosomal hypersensitivity of Fanconi anemia fibroblasts. Proc. Natl. Acad. Sci. (U.S.A.), 84: 5853–5857.

    Article  CAS  Google Scholar 

  • Sibghat-Ullah, I Husain, W Carlton and A Sancar, 1989. Human nucleotide excision repair in vitro: Repair of pyrimidine dimers, psoralen and cisplatin adducts by HeLa cell-free extract. Nucl. Acids Res., 17: 4471–4484.

    Article  CAS  Google Scholar 

  • Smerdon MJ, 1989. DNA excision repair at the nucleosomal level of chromatin In: M.W. Lambert and J. Laval Eds., DNA Repair Mechanisms and Their Biological Implications in Mammalian Cells, Plenum Press, New York, pp., 271–294.

    Chapter  Google Scholar 

  • Sognier MA, and WN Hittelman, 1983. Loss of repairability of DNA interstrand crosslinks in Fanconi’s anemia cells with culture age. Mutation Res., 108: 383–393.

    Article  PubMed  CAS  Google Scholar 

  • Sollner-Webb B, RD Camerini-Otero and G Felsenfeld, 1976. Chromatin structure as probed by nucleases and proteases: Evidence for the central role of histones H3 and H4. Cell, 9: 179–193.

    Article  PubMed  CAS  Google Scholar 

  • Strathdee CA, AMV Duncan and M Buchald, 1992. Evidence for at least four Fanconi anemia genes, including FACC, on chromosome 9. Nature Genetics, 1: 196–198.

    Article  PubMed  CAS  Google Scholar 

  • Song PS and KJ Tapley, Jr, 1979. Photochemistry and photobiology of psoralens. Photochem. Photobiol., 29: 1177–1197.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, N Miura, I Satokata, I Miyamoto, MC Yoshida, Y Satoh, S Kondo, A Yasui, H Okayama and Y Okada, 1990. Analysis of a human DNA excision repair gene involved in group A xeroderma pigmentosum and containing a zinc-finer domain. Nature (London), 348: 73–76.

    Article  CAS  Google Scholar 

  • Tsongalis GJ, WC Lambert and MW Lambert, 1990a. Electroporation of normal human DNA endonucleases into xeroderma pigmentosum cells corrects their DNA repair defect. Carcinogenesis, 11: 499–503.

    Article  PubMed  CAS  Google Scholar 

  • Tsongalis GJ, WC Lambert and M W Lambert, 1990b. Correction of the ultraviolet light induced DNA repair defect in xeroderma pigmentosum cells by electroporation of a normal human endonuclease. Mutation Res., 244: 257–263.

    Article  PubMed  CAS  Google Scholar 

  • Uander EE, and B Fleischer-Reischman, 1983. Response of lymphocytes from Fanconi’s anemia patients and their heterozygous relatives to 8-methoxypsoralen in a cloning survival test. Human Genet., 64: 167–172.

    Article  Google Scholar 

  • Vigny P, F Gaboriau, L Voituriez and J Cadet, 1985. Chemical structure of psoralen-nucleic acid photoadducts. Biochimie, 67: 317–325.

    Article  PubMed  CAS  Google Scholar 

  • Vuillaume M, L Daya-Grosjean, P Vincens, JL Pennetier, P Tarroux, A Baret, R Calvayrac, A Taieb, A Sarasin, 1992. Striking differences in cellular catalase activity between two repair-deficient diseases: Xeroderma pigmentosum and trichothiodystrophy. Carcinogenesis, 13: 321–328.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe F, 1984. Condensation of polynucleosomes by histone H1 binding. FEBS Lett., 170: 19–22.

    Article  PubMed  CAS  Google Scholar 

  • Weksberg R, M Buchwald, P Sargent and L Siminovitch, 1979. Specific cellular defects in patients with Fanconi’s anemia. J. Cell. Physiol., 101: 311–324.

    Article  PubMed  CAS  Google Scholar 

  • Wood RD, P Robins and T Lindahl, 1988. Complementation of the xeroderma pigmentosum DNA repair defect in cell-free extracts. Cell, 53: 97–106.

    Article  PubMed  CAS  Google Scholar 

  • Yamaizumi M, T Sugano, H Asahina, Y Okada and T Uchida, 1986. Microinjection of partially purified protein factor restores DNA damage specifically in group A of xeroderma pigmentosum cells. Proc. Natl. Acad. Sci. (U.S.A.), 83: 1476–1479.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lambert, M.W., Parrish, D.D., Lambert, W.C. (1994). Molecular Mechanisms Responsible for Repair of Adducts Induced in Human Cellular DNA by Puva. In: Lambert, W.C., Giannotti, B., van Vloten, W.A. (eds) Basic Mechanisms of Physiologic and Aberrant Lymphoproliferation in the Skin. NATO ASI Series, vol 265. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1861-7_41

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1861-7_41

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5756-8

  • Online ISBN: 978-1-4615-1861-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics