Skip to main content

Neurotoxicity of MPTP and Uptake of MPPT into Dopamine and Norepinephrine Neurons in Mice

  • Chapter
Neurochemistry in Clinical Application

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 363))

Abstract

We have earlier demonstrated that 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) produces a direct toxicity on DA neurons in the substantia nigra (SN) and norepinephrine (NE) neurons in the locus coeruleus (LC) other than in the terminals. These results suggest that DA neurons in the SN and NE neurons in the LC are possibly able to uptake MPP+ through the DA and NE uptake systems, respectively, presumably via DA and NE dendrites. The present study examined this hypothesis. Adult male BALB/c mice were used. In the first part, animals received various combinations of nomifensine (NOM, a specific DA uptake blocker) and MPTP treatment. NOM was infused to the SN or striatum at 1.5 μg and 3.0 μg per day for a total of seven days. The infusion volume was 0.25 and 0.5 μl, respectively. MPTP was given systemically (IP) at 30 mg/kg per day for a total of seven days. On each day, NOM was given 30 min prior to MPTP injection. In the second part, animals received the same combinations of desimipramine (DMI, a specific NE uptake blocker) and MPTP treatments. DMI was infused to the LC and hippocampus at 1.25 μg and 2.5 μg per day 30 min before MPTP injection for a total of 7 days. The volumes of infusion were 0.25 μl in the LC and 0.5 μl in the hippocampus. Animals were subject to locomotor activity test 7 days after the last MPTP, MPP+ (saline) injections. They were then sacrificed and brain tissues of the striatum and hippocampus were subject to DA and NE analyses with HPLC fluorescence detection. Results indicated that MPTP consistently and markedly decreased DA level in the striatum and NE level in the hippocampus. It also impaired locomotor activity and produced long-lasting tremor in mice. NOM pretreatment in the striatum completely prevented MPTP’s toxicity, while NOM pretreatment in the SN only partially, but significantly, prevented MPTP’s toxicity on both DA and motor activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arai, N., Misugi, K., Goshima, Y. and Misu, Y.: Evaluation of a l-methyl-4-phenyl-1, 2, 3, 6-tetra-hydropyridine (MPTP)-treated C57 black mouse model for parkinsonism. Brain Res. 515: 57–63, 1990.

    Article  PubMed  CAS  Google Scholar 

  2. Burns, R. S., Chiueh, C. C., Markey, S. P., Ebert, M. H., Jacobwitz, D. M. and Kopin, I. J.: A primate model of parkinsonism: Selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine. Proc. Natl. Acad. Sci. U. S. A. 80: 4546–4550, 1983.

    Article  PubMed  CAS  Google Scholar 

  3. Campbell, K. J., Takada, M. and Hattori, T.: Evidence for retrograde axonal transport of MPP+ in the rat. Neurosci. Lett. 118: 151–154, 1990.

    Article  PubMed  CAS  Google Scholar 

  4. Chang, F. W., Wang, S. D., Lu, K. T. and Lee, E. H. Y.: Differential interactive effects of gliotoxin and MPTP in the substantia nigra and the locus coeruleus in BALB/c mice. Brain Res. Bull. 31: 253–266, 1993.

    Article  PubMed  CAS  Google Scholar 

  5. Chiba, K., Trevor, A. J. and Castagnoli, N., Jr.: Activie uptake of MPP+, a metabolite of MPTP, by brain synaptosomes. Biochem. Biophys. Res. Commun. 128: 1228–1232, 1985.

    Article  PubMed  CAS  Google Scholar 

  6. Chiueh, C. C., Johannessen, J. N., Chesselet, M. F. and Markey, S. P.: Neurotoxic mechanism of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) and its oxidative metabolites in the nigrostriatal system of C57BL6 mice. Fed. Proc. 44: 893, 1985.

    Google Scholar 

  7. Colotla, V. A., Flores, E., Oscos, A., Meneses, A. and Tapia, R.: Effects of MPTP on locomotor activity in mice. Neurotoxicol. Teratol. 12: 405–407, 1990.

    Article  PubMed  CAS  Google Scholar 

  8. Forno, L. S., Langston, J. W., Delanney, L. E., Irwin, I. and Ricaurte, G. A.: Locus ceruleus lesions and eosinophilicinclusions in MPTP-treated mondeys. Ann. Neurol. 20: 449–455, 1986.

    Article  PubMed  CAS  Google Scholar 

  9. Gerlach, M., Riederer, P., Przuntek, H. and Youdim, B. H.: MPTP mechanisms of neurotoxic-ity and their implications for parkinson’s disease. Eur. J. Pharmacol.208: 273–286, 1991.

    Article  PubMed  CAS  Google Scholar 

  10. Gray, E.G. and Whittaker, V. P.: The isolation of nerve endings from brain: an electron microscopic study of cell fragments divided by homogenization and centrifugation. J. Anat.96: 79–88, 1962.

    PubMed  CAS  Google Scholar 

  11. Groves, P. M.. Wilson, C. J., Young, S. J. and Rebec, G. V.: Self-inhibition by dopaminergic neurons. Science, 190: 522–529, 1975.

    Article  PubMed  CAS  Google Scholar 

  12. Gupta, M., Felten, D. L. and Gash, D. M.: MPTP alters central catecholamine neurons in addition to the nigrostriatal system. Brain Res. Bull. 13: 737–742, 1984.

    Article  PubMed  CAS  Google Scholar 

  13. Hallman, H., Lange, J., Olson, L., Stromberg, I. and Jonsson, G.: Neurochemical and histochemical characterization of neurotoxic effects of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine on brain catecholamine neurons in the mouse. J. Neurochem. 44: 117–127, 1985.

    Article  PubMed  CAS  Google Scholar 

  14. Heikkila, R. E., Hess, A. and Duvoisin. R. C.: Dopaminergic neurotoxicity of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine in mice. Science (Wash. DC) 224: 1451–1453, 1984a.

    Article  CAS  Google Scholar 

  15. Heikkila, R. E., Manzino, L., Cabbat, F. S. and Duvoisin, R. C.: Protection against the dopaminergic neurotoxicity of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine by monoamine oxidase inhibitors. Nature (Lond.) 311: 467–469, 1984b.

    Article  CAS  Google Scholar 

  16. Hu, S. C., Chang, F. W., Sung, Y. J., Hsu, W. M. and Lee, E. H. Y.: Neurotoxic effects of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine in the substantia nigra and the locus coeruleus in BALB/c mice. J. Pharmacol. Exp. Ther. 259: 1379–1387, 1991.

    PubMed  CAS  Google Scholar 

  17. Jarvis, M. F.and Wagner, G. C.: 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced neurotoxicity in the rat; characterization and age-dependent effects. SYNAPSE, 5: 104–112, 1990.

    Article  PubMed  CAS  Google Scholar 

  18. Javitch. J. A., D’Amato, R. J., Strittmatter, S. M. and Snyder, S. H.: Parkinsonism-induc-ing neurotoxin, N-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine: Uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity. Proc. Natl. Acad. Sci. U. S.A. 82: 2173–2177, 1985.

    Article  PubMed  CAS  Google Scholar 

  19. Jenner, P., Rupniak, N. M. J., Rose, S., Kelly, E., Kilpatrick, G., Less, A. and Marsden, C. D.: 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced parkinsonism in the common marmoset. Neurosci. Lett. 50: 85–90, 1984.

    Article  PubMed  CAS  Google Scholar 

  20. Kuriyama, T., Taguchi, J. I. and Kuriyama, K.: Functional alterations in striatal cholinergic and striatonigral gabaergic neurons following 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) administration. Neurochem. Int. 16: 319–329, 1990.

    Article  PubMed  CAS  Google Scholar 

  21. Langston, J. W., Forno, L. S., Rebert, C. S. and Irwin, I. 1-methyl-1, 2, 5, 6-tetrahydropyridine causes selective damage to the zona compacta of the substantia nigra in the squirrel monkey. Brain Res. 292: 390–394, 1984.

    Article  PubMed  CAS  Google Scholar 

  22. Lee, E. H. Y., Lin, Y. P. and Yin, T. H.: Effects of lateral and medial septal lesions on various activity and reactivity measures in rats. Physiol. Behave. 42: 97–102, 1987.

    Article  Google Scholar 

  23. Lehmann, A.: Atlas stereotaxique du cerveau de la souris. 1974.

    Google Scholar 

  24. Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J.: Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 265–275, 1951.

    PubMed  CAS  Google Scholar 

  25. Mann, D. M. A. and Yates, P. O.: Pathological basis for neurotransmitter changes in Parkinson’s disease. Neuropathol. Appl. Neurobiol. 9: 3–19, 1983.

    Article  PubMed  CAS  Google Scholar 

  26. Mann, D. M. A. Yates, P. O. and Hawkes, J.: The pathology of thehuman locus ceruleus. Clin. Neuropathol. 2: 1–7, 1983.

    PubMed  CAS  Google Scholar 

  27. Matsuda, L. A., Schmidt, C. J., Hanson, G. R. and Gibb, J. W.: Effect of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) on striatal tyrosine hydroxylase and tryptophan hydroxylase in rat. Neuropharmacology, 25: 249–255, 1986.

    Article  PubMed  CAS  Google Scholar 

  28. Mitchell, I. J., Cross, A. J., Sambrook, M. A. and Crossman, A. R.: Sites of the neurotoxic action of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine in the macaque monkey include the ventral tegmental area and the locus coeruleus. Neurosci. Lett. 61: 195–200, 1985.

    Article  PubMed  CAS  Google Scholar 

  29. Nissbrandt, H., Sundstrom, E., Jonsson, G., Hjorth, S. and Carlsson, A.: Synthesis and release of dopamine in rat brain: comparison between substantia nigra pars compacta, pars reticulata, and striatum. J. Neurochem. 52: 1170–1182, 1989.

    Article  PubMed  CAS  Google Scholar 

  30. Peat, M. A. and Gibb, J. W.: High performance liquid Chromatographic determination of indoleamines, dopamine and norepinephrine in rat brain with fluorimetric detection. Anal. Biochem. 128: 275–280, 1983.

    Article  PubMed  CAS  Google Scholar 

  31. Ransom, B. R., Kunis, D. M., Irwin, I. and Langston, J. W.: Astrocytes convert the parkinsonism inducing neurotoxin, MPTP, to its active metabolite, MPP+. Neurosci. Lett. 75: 323–328, 1987.

    Article  PubMed  CAS  Google Scholar 

  32. Reid, W. G. J., Broe, G. A., Hely, M. A., Morris, J. G. L., Williamson, P. M., O’Sullivan, D. J., Rail, D., Genge, S. and Moss, N. G.: The neuropsychology of de novo patients with age on onset. Int. J. Neurosci. 48: 205–217, 1989.

    Article  PubMed  CAS  Google Scholar 

  33. Ricaurte, G. A., Langston, J. W., Delanney, L. E., Irwin, I. and Brooks, J. D.: Dopamine uptake blockers protect against the dopamine depleting effect of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) in the mouse striatum. Neurosci. Lett. 59: 259–264, 1985.

    Article  PubMed  CAS  Google Scholar 

  34. Robertson, G. S., Damsma, G. and Fibiger, H. C.: Characterization of dopamine release in the substantia nigra by in vivo microdialysis in freely moving rats. J. Neurosci. 11: 2209–2216, 1991.

    PubMed  CAS  Google Scholar 

  35. Segal, D. S. and Kuczenski, R.: Tyrosine hydroxylase activity: Regional and subcellular distribution in brain. Brain Res. 68: 261–266, 1974.

    Article  PubMed  CAS  Google Scholar 

  36. Siegel, M.: Nonparametric Statistics for the Behavioral Science, McGraw-Hill Company, New York, 1965.

    Google Scholar 

  37. Singer, T. P. and Ramsay, R. R.: Mechanism of the neurotoxicityof MPTP. FEBS Lett. 274: 1-8, 1990.

    Google Scholar 

  38. Sundstrom, E., Fredriksson, A. and Archer, T.: Chronic neurochemical and behavioral changes in MPTP-lesioned C57BL/6 mice: A model for Parkinson’s disease. Brain Res. 528: 181–188, 1990.

    Article  PubMed  CAS  Google Scholar 

  39. Svensson, T. H., Bunney, B. S. and Aghajanian, G. K.: Inhibition of both noradrenergic and serotonergic neurons in brain by the a-adrenergic agonist clonidine. Brain Res. 92: 291–306, 1975.

    Article  PubMed  CAS  Google Scholar 

  40. Takada, M., Li, Z. K. and Hattori, T.: Intracerebral MPTP injections in the rat cause cell loss in the substantia nigra, ventral tegmental area and dorsal raphe. Neurosci. Lett. 78: 145–150, 1987.

    Article  PubMed  CAS  Google Scholar 

  41. Tetrud J. W. and Langston, J. W.: Tremor in MPTP-induced parkinsonism. Neurology,42: 407–410, 1992.

    Article  PubMed  CAS  Google Scholar 

  42. Van Dognen, V. P. A. M.: The human locus coeruleus in neurology and psychiatry (Parkinson’s, Lewy body, Hallervorden-Spatz, Alzheimer’s and Korsakoff s disease, (pre) senile dementia, schizophrenia, affective disorders, psychosis). Prog. Neurobiol. 17: 97–139, 1981.

    Article  Google Scholar 

  43. Willoughby, J., Cowburn, R. F., Hardy, J. A., Glover, V. and Sandler, M.: 1-Methyl-4-phenylpyridine uptake by human and rat striatal synaptosomes. J. Neurochem. 52: 627–631, 198

    Article  PubMed  CAS  Google Scholar 

  44. Wilson, J. A., Doyle, T. J. and Lau, Y. S.: MPTP, MPDP+ and MPP+ cause decreases in dopamine content in mouse brain slices. Neurosci. Lett. 108: 213–218, 1990.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lee, E.H.Y., Lu, K.T. (1995). Neurotoxicity of MPTP and Uptake of MPPT into Dopamine and Norepinephrine Neurons in Mice. In: Tang, L.C., Tang, S.J. (eds) Neurochemistry in Clinical Application. Advances in Experimental Medicine and Biology, vol 363. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1857-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1857-0_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5754-4

  • Online ISBN: 978-1-4615-1857-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics