Skip to main content

Development of Antidepressant Drugs

Fluoxetine (Prozac) and Other Selective Serotonin Uptake Inhibitors

  • Chapter
Neurochemistry in Clinical Application

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 363))

Abstract

Active uptake processes have been described for the monoaminergic neurotransmitters including serotonin (5-hydroxytryptamine, 5-HT), norepinephrine (NE) and dopamine (DA) in nervous tissues (Whitby, Axelrod, and Weil-Malherbe, 1961; Burgen and Iverson, 1965; Iverson, 1971). The uptake of 5-HT and NE in brain tissues has been the target sites in our search of selective inhibitors, which may have therapeutic potential for treatment of depressive disorders (Wong et al., 1974; 1975a; 1993a). Fluoxetine [Prozac], a member of the substituted phenoxyphenylpropylamines, was the first selective 5-HT uptake inhibitor to appear in the scientific literature (Wong et al, 1974) and has served as a useful tool to establish the physiological role of 5-HT neurons and a reference of pharmacological responses indicative of an enhanced transmission of 5-HT neurons (Fuller and Wong, 1977; Wong and Fuller, 1987; Wong and Murphy, 1989; Fuller and Wong, 1990). After its introduction in 1988, fluoxetine (Prozac) has become a major antidepressant drug in the United States and in many countries (Beasley et al., 1990; Boyer and Feighner, 1991a). In the U.S., two other selective 5-HT uptake inhibitors, sertraline and paroxetine, have been introduced as antidepressant drugs. In this article, we present some of the background which attracted our attention, and some studies on the chemical series of phenoxyphenylpropylamines and the enantiomers of fluoxetine and its major metabolite norfluoxetine as inhibitors of 5-HT and NE uptake in vitro. We also present the consequences of 5-HT reuptake inhibition in vivo, and the contrast between the classical tricyclic antidepressant drugs and the newly developed selective 5-HT reuptake inhibitors in terms of their interaction with receptors of neurotransmitters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adell, A. and Artigas, F. (1991).Differential effects of clomipramine given locally or systemically on extracellular 5-hydroxytryptamine in raphe nuclei and frontal cortex: an in vivo brain microdialysis study. Naunyn-Schmiedeberg’s Arch. Pharmacol. 343: 237–244.

    CAS  Google Scholar 

  • Asberg, M., Bertilsson, L., Tuck, D. et al. (1973).Indolamine metabolites in the cerebrospinal fluid of depressed patients before and during treatment with nortriptyline. Clin. Pharmacol. Ther. 14: 277–286.

    PubMed  CAS  Google Scholar 

  • Asberg, M, Bertilsson, L., Martensson, B. et al. (1986).Therapeutic effects of serotonin uptake inhibitors in depression. J. Clin. Psychiatry 47 (suppl): 23–35.

    PubMed  CAS  Google Scholar 

  • Asberg, M. and Wagner, A. (1986). Biochemical effects of antidepressant treatment-studies of monoamine metabolites in cerebrospinal fluid and platelet [H]imipramine, in “Antidepressants and Receptor function,” Wiley, Chichester, Ciba Foundation Symposium 123: 57–83.

    Google Scholar 

  • Aschroft, G. W., Crawford, T. B. B. and Eccleston, D. (1966).5-Hydroxyindole compounds in the cerebrospinal fluid of patients with psychiatric or neurological diseases. Lancet11: 1049–1050.

    Google Scholar 

  • Auerbach, S. B., Minzenberg, M. J. and Wilkinson, L. O. (1989).Extracellular serotonin and 5-hydroxyindoleacetic acid in hypothalamus of the unanesthetized rat measured by in vivo dialysis coupled to high-performance liquid chromatography with electrochemical detection: dialysate serotonin reflects neuronal release. Brain Res. 499: 281–290.

    Article  PubMed  CAS  Google Scholar 

  • Barrett, R. J., Blackshear, M. A. and Sanders-Bush, E. (1982).Discriminative stimulus properties of L-5-hydroxytryptophan: Behavioral evidence for multiple serotonin receptors. Psychopharmacology 76: 29–35.

    Article  PubMed  CAS  Google Scholar 

  • Beasley, C. M., Bosomworth, J. C. and Wernicke, J. F. (1990).Fluoxetine: relationship among dose, response, adverse events, and plasma concentrations in the treatment of depression. Psychopharmacol. Bull. 26: 18–24.

    PubMed  Google Scholar 

  • Bjerkenstedt, L., Edman, G., Flyckt, L. et al. (1985).Clinical and biochemical effects of citalopram, a selective 5-HT reuptake inhibitor-a dose-response study in depressed patients. PsychopharmacoL 87: 253–259.

    Article  CAS  Google Scholar 

  • Bolden-Watson, C. and Richelson, E. (1993).Blockade by newly developed anti-depressants of biogenic amine uptake into rat brain synaptosomes. Life Sci. 52: 1023–1029.

    Article  PubMed  CAS  Google Scholar 

  • Bourin, M. (1990).Is it possible to predict the activity of a new antidepressant in animals with simple psychopharmacological tests? Fundam. Clin. Pharmacol. 4: 49–64.

    CAS  Google Scholar 

  • Boyer, W. E. and Feighner, J. D. (1991a). The efficacy of selective serotonin re-uptake inhibitors in depression, in “Selective Serotonin Re-Uptake Inhibitors, The Clinical Use of Citalopram, Fluoxetine, Fluvoxamine, Paroxetine and Sertraline,” J. D. Feighner and W. E. Boyer, eds., John Wiley & Son, Chichester, England, pp. 89–108.

    Google Scholar 

  • Boyer, W. E. and Feighner, J. D. (1991b). Side-effects of the selective serotonin re-uptake inhibitors, ibid, pp. 133-152.

    Google Scholar 

  • Bremner, J. D. (1984).Fluoxetine in depressed patients: a comparison with imipramine. J. Clin. Psychiatry 45: 414–419.

    PubMed  CAS  Google Scholar 

  • Broune, H. R., Bunney, W. E., Jr., Colbum, R. W. et al. (1968).Noradrenaline, 5-hydroxytryptamine and 5-hydroxyindoleacetic acid in hindbrains of suicidal patients. Lancet 11: 805–808.

    Article  Google Scholar 

  • Burgen, A.S.V. and Iversen, L.L. (1965).The inhibition of noradrenaline uptake by sympathomimetic amines in the rat isolated heart. Brit. J. Pharmacol. 25: 34–49.

    PubMed  CAS  Google Scholar 

  • Bymaster, F. P. and Wong, D. T. (1977).Effect of Lilly 110140, 3-(p-trifluoro-methylphenoxy)-N-methyl-3-phenylpropylamine on synthesis of 3H-serotonin from 3H-tryptophan in rat brain. The Pharmacologist 16: 244.

    Google Scholar 

  • Carboni, E. and Di Chiara, G. (1989).Serotonin release estimated by transcortical dialysis in freely-moving rats. Neuroscience 32: 637–645.

    Article  PubMed  CAS  Google Scholar 

  • Carlsson, A. (1970).Structural specificity for inhibition of [14C]-5-hydroxytryptamine uptake by cerebral slices. J. Pharm. Pharmacol. 22: 729–732.

    Article  PubMed  CAS  Google Scholar 

  • Carlsson, A., Fuxe, K., Hamberger, B. and Lindqvist, M. (1966).Biochemical and histochemical studies on the effects of imipramine-like drugs and (+)-amphetamine on central and peripheral catecholamine neurons. Acta Physiol. Scand. 67: 481–497.

    Article  PubMed  CAS  Google Scholar 

  • Carlsson, A., Corrodi, H., Fuxe, K. and Hokfelt, T. (1969a). Effect of antidepressant drugs on the depletion of intraneuronal brain 5-hydroxytryptamine stores caused by 4-methyl-a-ethyl-meta-tyramine. Eur. J. Pharmacol. 5: 357–366.

    Article  PubMed  CAS  Google Scholar 

  • Carlsson, A., Corrodi, H., Fuxe, K. and Hokfelt, T. (1969b).Effects of some antidepressant drugs on the depletion of intraneuronal brain catecholamine stores caused by 4, a-dimethyl-meta-tyramine. Eur. J. Pharmacol. 5: 367–373.

    Article  PubMed  CAS  Google Scholar 

  • Carlsson, A., Fuxe, K. and Ungerstedt, U. (1968).The effects of imipramine of central 5-hydroxytryptamine neurons. J. Pharm. Pharmacol. 20: 150–151.

    Article  PubMed  CAS  Google Scholar 

  • Chaput, H., de Montigny, C. and Blier, P. (1986).Effects of a selective 5-HT reuptake blocker, citalopram, on the sensitivity of 5-HT autoreceptors: electrophysiological studies in the rat brain. Naunyn-Schmiedeberg’s Arch. Pharmacol. 333: 342–348.

    Article  CAS  Google Scholar 

  • Claassen, V., Davis, J. E., Hertting, G. et al. (1977).Fluvoxamine, a specific 5-hydroxytryptamine uptake inhibitor. Brit. J. Pharmacol. 60: 505–516.

    Article  CAS  Google Scholar 

  • Clemens, J. A., Sawyer, B. D. and Cerimele, B. (1977).Further evidence that serotonin is a neurotransmitter involved in the control of prolactin secretion. Endocrinology 100: 692–698.

    Article  PubMed  CAS  Google Scholar 

  • Cohn, J. B. and Wilcox, C. S. (1992).Paroxetine in major depression: a double-blind trial with imipramine and placebo. J. Clin. Psychiatry 53: 2 (suppl) 52–56.

    PubMed  Google Scholar 

  • Coppen, A. J., Prange, A. K. and Whybrow, P. C. (1972).Abnormalities of indoleamines in affective disorders. Arch. Gen. Psychiatry 26: 474–478.

    Article  PubMed  CAS  Google Scholar 

  • Coppen, A., Shaw, D. M., and Farrell, J. P. (1963).Potentiation of the antidepressive effect of a monoamine oxidase inhibitor by tryptophan. Lancet 1: 79–81.

    Article  PubMed  CAS  Google Scholar 

  • Coppen, A., Shaw, D. M., Herzberg, B. and Maggs, R. (1967).Tryptophan in the treatment of depression. Lancet 11: 1178.

    Article  Google Scholar 

  • Corrodi, H. and Fuxe, K. (1968).The effects of imipramine on central monoamine neurones. J. Pharm. Pharmacol. 20: 230–231.

    Article  PubMed  CAS  Google Scholar 

  • Dahlstrom, A. and Fuxe, K. (1964).Evidence for the existence of monoamine-containing neurons in the central nervous system. 1. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol. Scand. 62: suppl. 232: 6–55.

    Google Scholar 

  • Dailey, J.W., Yan, Q.S., Mishra, P.K. et al. (1992).Effects of fluoxetine on convulsions and in brain serotonin as detected by microdialysis in genetically epilepsy-prone rats. J. Pharmacol. Exp. Ther. 260: 533–540.

    PubMed  CAS  Google Scholar 

  • Delgado, P. L., Charney, D. S., Price, L. H. et al. (1990).Serotonin function and the mechanism of antidepressant action. Arch. Gen. Psychiatry 47: 411–418.

    Article  PubMed  CAS  Google Scholar 

  • Dencker, S. J., Malm, U., Roo, B. E. et al. (1966).Acid monoamine metabolites of cerebrospinal fluid in mental depression and mania. J. Neurochem. 13: 1545–1548.

    Article  PubMed  CAS  Google Scholar 

  • Dengler, H.J. and Titus, E.O. (1961).The effect of drugs on the uptake of isotopic norepinephrine in various tissues. Biochem. Pharmacol. 8: 64.

    Article  Google Scholar 

  • Dominguez, R. A., Goldstein, B. J., Jacobson, A. F. and Steinbook, R. M. (1985).A double-blind placebo-controlled study of fluvoxamine and imipramine in depression. J. Clin. Psychiatry 46: 84–87.

    PubMed  CAS  Google Scholar 

  • Doogan, D. P. and Caillard, V. (1988).Sertraline: A new antidepressant. J. Clin. Psychiatry 49: 8 (suppl) 46–51.

    PubMed  Google Scholar 

  • Feighner, J. P. (1985).A comparative trial of fluoxetine and amitriptyline in patients with major depressive disorder. J. Clin. Psychiatry 46: 69–372.

    Google Scholar 

  • Flood, J. F. and Cherkin, A. (1987).Fluoxetine enhances memory processing in mice. Psychopharmacology 93: 36–43.

    Article  PubMed  CAS  Google Scholar 

  • Fuller, R. W. (1981).Serotonergic stimulation of pituitary-adrenocortical function in rats. Neuroendocrinology 32: 118–127.

    Article  PubMed  CAS  Google Scholar 

  • Fuller, R. W., Perry, K. W. and Molloy, B. B. (1974).Effect of an uptake inhibitor on serotonin metabolism in rat brain: studies with 3-(p-trifluoromethylphenoxy)-N-methyl-3-phenylpropylamine. Life Sci. 15: 1161–1171.

    Article  PubMed  CAS  Google Scholar 

  • Fuller, R. W., Perry, K. W. and Molloy, B. B. (1975).Effect of 3-(p-trifluoro-methylphenoxy)-N-methyl-3-phenylpropylamine on the depletion of brain serotonin by 4-chloroamphetamine. J. Pharmacol. Exp. Ther. 193: 796–803.

    CAS  Google Scholar 

  • Fuller, R. W. and Wong, D. T. (1977).Inhibition of serotonin reuptake. Fed. Proc.36: 2154–2158.

    PubMed  CAS  Google Scholar 

  • Fuller, R. W. and Wong, D. T. (1990). Serotonin uptake and serotonin uptake inhibition. Ann. N.Y. Acad. Sci. 600: 68–78.

    Article  PubMed  CAS  Google Scholar 

  • Fuller, R. W., Wong, D.T. and Robertson, D. W. (1991).Fluoxetine, a selective inhibitor of serotonin uptake. Medicinal Res. Rev. 11: 17–34.

    Article  CAS  Google Scholar 

  • Geyer, M. A., Dawsey, W. J. and Mandell, A. L. (1978).Fading: a new cytofluorimetric measure quantifying serotonin in the presence of catecholamines at the cellular level in brain. J. Pharmacol. Exp. Ther. 207: 650–667.

    PubMed  CAS  Google Scholar 

  • Gibbs, D. M. and Vale, W. (1983).Effect of the serotonin reuptake inhibitor fluoxetine on corticotropin-releasing factor and vasopressin secretion into hypophysial portal blood. Brain Res. 280: 176–179.

    Article  PubMed  CAS  Google Scholar 

  • Gill, K., Amit, Z. and Koe, B. (1988).Treatment with sertraline, a new serotonin uptake inhibitor, reduces voluntary ethanol consumption in rats. Alcohol 5: 349–354.

    Article  PubMed  CAS  Google Scholar 

  • Glowinski, J. and Axelrod, J. (1964). Inhibition of uptake of tritiated-noradrenaline in the intact rat brain by imipramine and structurally-related compounds. Nature 204: 1318–1319.

    Google Scholar 

  • Goudie, A. J., Thornton, E. W. and Wheeler, T. J. (1976).Effects of Lilly 110140, a specific inhibitor of 5-hydroxytryptamine uptake, on food intake and 5-hydroxy-tryptophan-induced anorexia. Evidence for serotonergic inhibition of feeding. J. Pharm. Pharmacol. 28: 318–320.

    CAS  Google Scholar 

  • Guan, X. M., and McBride, W. J. (1988).Fluoxetine increases the extracellular levels of serotonin in the nucleus accumbens. Brain Res. Bull. 21: 43–46.

    Article  PubMed  CAS  Google Scholar 

  • Guelfi, J. D., Dreyfus, J. F., Boyer, P. and Pichot, P. (1981). A double-blind controlled multicenter trial comparing indalpine and imipramine. 3rd World Congress of Biological Psychiatry, Stockhohn, June 28-July 3, 1981.

    Google Scholar 

  • Hall, H. and Ogren, S. O. (1981).Effects of antidepressant drugs on different receptors in rat brain. Eur. J. Pharmacol. 70: 393–407.

    Article  PubMed  CAS  Google Scholar 

  • Heel, R. C., Morley, P. A., Brogden, R. N., et al. (1982).Zimelidine: a review of its pharmacological properties and therapeutic efficacy in depressive illness. Drugs 24: 169–206.

    Article  PubMed  CAS  Google Scholar 

  • Hertting, G., Axelrod, J. and Whitby, L. G. (1961).Effect of drugs on the uptake and mechanism of [3H]-no-repinephrine. J. Pharmacol. Exp. Ther. 134: 146–153.

    CAS  Google Scholar 

  • Hertz, D. and Sulman, F. G. (1968). Preventing depression with tryptophan. Lancet I: 531.

    Google Scholar 

  • Horng, J. S. and Wong, D. T. (1976).Effects of serotonin uptake inhibitor, Lilly 110140, on transport of serotonin in rat and human blood platelets. Biochem. Pharmacol.25: 865–867.

    Article  PubMed  CAS  Google Scholar 

  • Hyttel, J. (1982).Citalopram-pharmacological profile of a specific serotonin uptake inhibitor with antidepressant activity. Neuro-Psychopharmacol. Biol. Psychiatry 6: 277–295.

    Article  CAS  Google Scholar 

  • Invernizzi, R., Belli, S. and Samanin, R. (1992).Citalopram’s ability to increase the extracellular concentrations of serotonin in the dorsal raphe prevents the drug’s effect in the frontal cortex. Brain Res. 584: 322–324.

    Article  PubMed  CAS  Google Scholar 

  • Itil, T. M., Shrivastava, R. K., Mukherjee, S. et al. (1983).A double-blind placebo-controlled study of fluvoxamine and imipramine in out-patients with primary depression. Brit. J. Clin. Pharmacol. 15: 433S–438S.

    Article  Google Scholar 

  • Iversen, L. L. (1971).Role of transmitter uptake mechanisms in synaptic neuro-transmission. Brit. J. Pharmacol. 41: 571–591.

    Article  CAS  Google Scholar 

  • Jenck, F., Moreau, J.-L., Mutel, V. et al. (1993).Evidence for a role of 5-HT1C receptors in the antiserotonergic properties of some antidepressant drugs. Eur. J. Pharmacol. 231: 223–229.

    Article  PubMed  CAS  Google Scholar 

  • Jesberger, J. A. and Richardson, J. S. (1985).Animal models of depression: Parallels and correlates to severe depression in human. Biol. Psychiatry 20: 764–784.

    Article  PubMed  CAS  Google Scholar 

  • Joly, D. and Danger, D.J. (1986).The effects of fluoxetine and zimelidine on the behavior of olfactory bulbectomized rats. Pharmacol. Biochem. Behav. 24: 199–204.

    Article  PubMed  CAS  Google Scholar 

  • Kalen, P., Strecker, R. E., Rosengren, E. and Bjorklund, A. (1988).Endogenous release of neuronal serotonin and 5-hydroxyindoleacetic acid in the caudate-putamen of the rat as revealed by intracerebral dialysis coupled to high-performance liquid chromatography with fluorimetric detection. J. Neurochem. 51: 1422–1435.

    Article  PubMed  CAS  Google Scholar 

  • Kline, N. S. and Sacks, W. (1963).Relief of depression within one day using an M.A.O. inhibitor and intravenous 5-HTP. Am. J. Psychiatry, 120: 274.

    PubMed  CAS  Google Scholar 

  • Koe, K. K., Weissman, A., Welch, W. M. et al. (1983).Sertraline, 1S, 4S-N-methyl-4-(3, 4-dichlorophenyl)-1, 2, 3, 4-tetrahydro-1-naphthylamine, a new uptake inhibitor with selectivity for serotonin. J. Pharmacol. Exp. Ther. 226: 686–700.

    PubMed  CAS  Google Scholar 

  • Korpi, E. R., Kleinman, J. E., Goodman, S. I. et al. (1968).Serotonin and 5-hydroxy-indoleacetic acid in brain of suicide victims: Comparison in chronic schizophrenic patients with suicide as cause of death. Arch. Gen. Psychiatry 43: 594–600.

    Article  Google Scholar 

  • Krulich, L. (1975).The effect of a serotonin uptake inhibitor (Lilly 110140) on the secretion of prolactin in the rat. Life Sci. 17: 1141–1144.

    Article  PubMed  CAS  Google Scholar 

  • Kuhar, M.J., Shaskan, E.G. and Snyder, S.H. (1971).The subcellular distribution of endogenous and exogenous serotonin in brain tissue: Comparison of synaptosomes storing serotonin, norepinephrine, and gamma-ami-nobutyric acid. J. Neurochem. 18: 333–343.

    Article  PubMed  CAS  Google Scholar 

  • Kuhar, M. J., Roth, R. and Aghajanian, G. K. (1972).Synaptosomes from forebrains of rats with midbrain raphe lesions: selective reduction of serotonin uptake. J. Pharmacol. Exp. Ther. 181: 36–45.

    PubMed  CAS  Google Scholar 

  • Kuhn, R. (1957).Die behandlung depressiver zustande mit einem iminodebenzylderivat (G22355).Schweiz, und Wschr. 87: 1135–1140.

    CAS  Google Scholar 

  • Lapin, I. P. and Oxenkrug, G. F. (1969).Intensification of the central serotonergic processes as a possible determinant of the thymoleptic effect. Lancet 1: 132–136.

    Article  PubMed  CAS  Google Scholar 

  • Lee, E. H. Y., Lin, W. R., Chen, H. Y. et al. (1992).Fluoxetine and 8-OHDPAT in the lateral septum enhances and impairs retention of an inhibitory avoidance response in rats. Physiol. Behav. 51: 681–688.

    Article  PubMed  CAS  Google Scholar 

  • Lloyd, K. G., Farley, I. J., Deck, J.H.H. et al. (1974).Serotonin and 5-hydroxy-indolacetic acid in discrete areas of the brainstem of suicide victims and control patients. Adv. Biochem. Psychopharmacol. 11: 387–397.

    PubMed  CAS  Google Scholar 

  • Marsden, C. A., Conti, J., Strope, E. et al. (1979). Monitoring 5-hydroxytryptamine release in the brain of the freely moving unanesthetized rat using in vivo voltammetry. Brain Res. 171: 85–99.

    Google Scholar 

  • Messing, R. B., Phebus, L., Fisher, L. A. et al. (1975).Analgesic effect of fluoxetine hydrochloride (Lilly 110140), a specific inhibitor of serotonin uptake. Psychopharmacol. Comm. 1: 511–521.

    CAS  Google Scholar 

  • Molina, V.A., Gobaille, S. and Mandel, P. (1986).Effects of serotonin-mimetic drugs on mouse-killing behavior. Aggress. Behav. 12: 201–269.

    Article  CAS  Google Scholar 

  • Moreau, J.-L., Jenck, F., Martin, J. R. et al. (1993).Effects of repeated mild stress and two antidepressant treatments on the behavioral response to 5-HT1C receptor activation in rats. Psychopharmacology 110: 140–144.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, J. M., Waller, M. B., Gatto, G. J. et al. (1985).Monoamine uptake inhibitors attenuate ethanol intake in alcohol-preferring (P) rats. Alcohol 2: 349–352.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, J. M., Waller, M. B., Gatto, G.J. et al. (1988).Effects of fluoxetine on the intragastric self-administration of ethanol in the alcohol preferring P lines of rats. Alcohol 5: 283–286.

    Article  PubMed  CAS  Google Scholar 

  • Muscettola, G., Goodwin, F. K., Potter, W. Z. et al. (1978).Imipramine and desipramine in plasma and spinal fluid. Arch. Gen. Psychiatry 35: 621–625.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, D. R., Thomas, D. R. and Johnson, A. M. (1989). Pharmacological effects of paroxetine after repeated administration to animals. Acta Psychiatry Scand. 80 (suppl 350), 21–23.

    Article  Google Scholar 

  • Nelson, J. C., Mazure, C. M., Bowers, M. B. and Jatlow, P. L. (1991).A preliminary, open study of the combination of fluoxetine and desipramine for rapid treatment of major depression. Arch. Gen. Psychiatry 48: 303–307.

    Article  PubMed  CAS  Google Scholar 

  • Ortmann, R., Waldmeier, P. C., Radeke, E. et al. (1980).The effect of 5-HT uptake and MAO-inhibitors on L-5-HTP-induced excitation in rats. Naunyn-Schmiedeberg’s Arch. Pharmacol. 311: 185–192.

    Article  CAS  Google Scholar 

  • Page, I. H. (1969). Serotonin and the brain, in “The Structure and Function of Nervous Tissue,” G. H. Bourne (ed.), Vol. III, Biochemistry and Disease, Academic Press, NY, pp. 289–307.

    Google Scholar 

  • Pare, C.M.B. (1963).Potentiation of monoamine oxidase inhibitors by tryptophan. Lancet II: 527–528.

    Article  Google Scholar 

  • Parti, C. J. and Hicks, J. (1974).In vivo demethylation of Lilly 110140: 3 (p-trifluoromethylphenoxy)-N-methyl-phenoxy)-N-methyl-3-phenyl propylamine to an active metabolite — Lilly 103947. Fed. Proc. 33: 560.

    Google Scholar 

  • Pastel, R. H. and Fernstrom, J. D. (1987).Short-term effects of fluoxetine and trifluorophenylpiperazines on electroencephalographic sleep in the rat. Brain Res. 436: 92–102.

    Article  PubMed  CAS  Google Scholar 

  • Perry, K. W. and Fuller R. W. (1992).Effect of fluoxetine on serotonin and dopamine concentration in microdialysis fluid from rat striatum. Life Sci. 50: 1683–1690.

    Article  PubMed  CAS  Google Scholar 

  • Richelson, E. and Nelson, A. (1984).Antagonism by antidepressants of neurotransmitter receptors of normal human brain in vitro. J. Pharmacol. Exp. Ther. 230: 94–102.

    PubMed  CAS  Google Scholar 

  • Robertson, D. W., Jones, N. D., Swartzendruber, J. K. et al. (1987).Molecular structure of fluoxetine hydrochloride, a highly selective serotonin uptake inhibitor. J. Med. Chem. 31: 185–189.

    Article  Google Scholar 

  • Rockman, G. E., Amit, Z., Brown, Z. W. et al. (1982).An investigation of the mechanisms of action of 5-hydroxytryptamine in the suppression of ethanol intake. Neuropharmacol. 21: 341–347.

    Article  CAS  Google Scholar 

  • Ross, S. B. and Renyi, A. L. (1967).Inhibition of the uptake of tritiated catecholamines by antidepressant and related agents. Eur. J. Pharmacol. 2: 181–186.

    Article  PubMed  CAS  Google Scholar 

  • Ross, S. B. and Renyi, A. L. (1969).Inhibition of the uptake of tritiated 5-hydroxy-tryptamine in brain tissue. Eur. J. Pharmacol. 7: 270–277.

    Article  PubMed  CAS  Google Scholar 

  • Roth, B. L., Meltzer, H. Y. and Craigo, S. (1992).Typical tricyclic antidepressants possess potent 5-HT1C receptor activity. Abst. 22nd Ann. Meeting, Society for Neuroscience 18: 522.

    Google Scholar 

  • Rutter, J. J. and Auerbach, S. B. (1993).Acute uptake inhibition increases extracellular serotonin in the rat forebrain. J. Pharmacol. Exp. Ther. 265: 1319–1324.

    PubMed  CAS  Google Scholar 

  • Sano, S. (1977).5-Hydroxy-L-tryptophan; a fast-acting drug for endogenous depression. Drugs Exptl. Clin. Res. 1: 239–242.

    Google Scholar 

  • Scatton, B., Claustre, Y., Graham, D., et al. (1988).SL 81.0385: A novel selective and potent serotonin uptake inhibitor. Drug Dev. Res. 12: 29–40.

    Article  CAS  Google Scholar 

  • Schmidt, M. J., Fuller, R. W. and Wong, D. T. (1988). Fluoxetine, a highly selective serotonin reuptake inhibitor: a review of preclinical studies. Brit. J. Psychiatr. 153(Suppl 3): 40–46.

    CAS  Google Scholar 

  • Shaskan, E. G. and Snyder, S. H. (1970).Kinetics of serotonin accumulation into slices from rat brain: relationship to catecholamine uptake. J. Pharmacol. Exp. Ther. 175: 404–418.

    PubMed  CAS  Google Scholar 

  • Shaw, D. M., Camps, F. E. and Eccleston, E. G. (1967).5-Hydroxytrytamine in the hind brain of depressive suicides. Brit. J. Psychiatry 113: 1407–1411.

    Article  CAS  Google Scholar 

  • Slater, I. H., Jones, G. T. and Moore, R. A. (1978).Inhibition of REM sleep by fluoxetine, a specific inhibitor of serotonin uptake. Neuropharmacol. 17: 383–389.

    Article  CAS  Google Scholar 

  • Slater, I. H., Rathbun, R. C. and Kattau, R. (1979).Role of 5-hydroxytryptamergic and adrenergic mechanism in antagonism of reserpine-induced hypothermia in mice. J. Pharm. Pharmacol. 31: 108–110.

    Article  PubMed  CAS  Google Scholar 

  • Snyder, S. H. and Coyle, J. T. (1969).Regional differences in 3H-norepinephrine and 3H-dopamine uptake into rat brain homogenates. J. Pharmacol. Exp. Ther., 165: 78–86.

    PubMed  CAS  Google Scholar 

  • Snyder, S. H. and Yamamura, H. I. (1977).Antidepressants and muscarinic acetylcholine receptor. Arch. Gen. Psychiatry 34: 236–239.

    Article  PubMed  CAS  Google Scholar 

  • Sugrue, M. F. (1979).On the role of 5-hydroxytryptamine in drug-induced antinociception. Brit. J. Pharmacol. 65: 677–681.

    Article  CAS  Google Scholar 

  • Sulser, F., Watts, J. and Brodie, B. B. (1962).On the mechanism of antidepressant action of imipramine-like drugs. Ann. N. Y. Acad. Sci. 96: 279.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, D. R., Nelson, D. R. and Johnson, A. M. (1987).Biochemical effects of the antidepressant paroxetine, a specific 5-hydroxytryptamine uptake inhibitor. Psychopharmacol. 93: 193–200.

    CAS  Google Scholar 

  • U’Prichard, D. C., Greenberg, D. A., Sheehan, P. B. etal. (1978).Tricyclic anti-depressants; therapeutic properties affinity for a-noradrenergic receptor binding sites in the brain. Sci. 199: 197–198.

    Article  Google Scholar 

  • Weil-Malherbe, H. and Szara, S. I. (1971). Brain amines and affective disorders, in “The Biochemistry of Functional and Experimental Psychosis,” Charles C. Thomas Publisher; Springfield, IL, pp. 57–76.

    Google Scholar 

  • Whitby, L.G., Axelrod, J. and Weil-Malherbe, H. (1961).The fate of H3-norepinephrine in animals. J. Pharmacol. Exp. Ther. 132: 193–201.

    PubMed  CAS  Google Scholar 

  • Wong, D. T. and Bymaster, F. P. (1976).The comparison of fluoxetine and nisoxetine with tricyclic antidepressants in blocking the neurotoxicity of p-chloroamphetamine and 6-hydroxydopamine in the rat brain. Res. Comm. Chem. Pathol. Pharmacol. 15: 221–231.

    CAS  Google Scholar 

  • Wong, D. T., Bymaster, F. P., Horng, J. S. and Molloy, B. B. (1975a).A new selective inhibitor for uptake of serotonin into synaptosomes of rat brain: 3-(p-trifluoro-methylphenoxy)-N-methyl-3-phenylpropylamine. J. Pharmacol. Exp. Ther. 193: 804–811.

    PubMed  CAS  Google Scholar 

  • Wong, D. T., Bymaster, F. P., Mayle, D.A. et al. (1993a).LY248686, a new inhibitor of serotonin and norepinephrine uptake. Neuropsychopharmacology 8: 23–33.

    PubMed  CAS  Google Scholar 

  • Wong, D. T., Bymaster, F. P., Reid, L. R. and Threlkeld, P. G. (1983).Fluoxetine and two other serotonin uptake inhibitors without affinity for neuronal receptors. Biochem. Pharmacol. 32: 1287–1293.

    Article  PubMed  CAS  Google Scholar 

  • Wong, D. T., Bymaster, F. P., Reid et al. (1993b).Norfluoxetine enantiomers as inhibitors of serotonin uptake in rat brain. Neuropsychopharmacology 8: 337–344.

    PubMed  CAS  Google Scholar 

  • Wong, D. T., Bymaster, F. P., Reid, L. R. et al. (1985a).Inhibition of serotonin uptake by optical isomers of fluoxetine. Drug Dev. Res. 6: 397–403.

    Article  CAS  Google Scholar 

  • Wong, D. T. and Fuller, R. W. (1987).Serotonergic mechanisms in feeding. Int. J. Obesity 11 (suppl 3): 125–133.

    CAS  Google Scholar 

  • Wong, D. T., Fuller, R. W. and Robertson, D.W. (1990a).Fluoxetine and its two enantiomers as selective serotonin uptake inhibitors. Acta Pharm. Nord. 2: 171–180.

    PubMed  CAS  Google Scholar 

  • Wong, D. T., Horng, J.-S. and Bymaster, F. P. (1975b).dl-N-methyl-3-(o-methoxyphenoxy)-3-phenylpropy-lamine hydrochloride, Lilly 94939, a potent inhibitor for uptake of norepinephrine into rat brain synaptosomes and heart. Life Sci.17: 755–760.

    Article  PubMed  CAS  Google Scholar 

  • Wong, D. T., Horng, J. S. and Fuller, R. W. (1973).Kinetics of serotonin accumulation into synaptosomes of rat brain: Effects of amphetamine and chloroamphetamine. Biochem. Pharmacol. 22: 311–322.

    Article  PubMed  CAS  Google Scholar 

  • Wong, D. T., Horng, J. S., Bymaster, F. P. et al. (1974).A selective inhibitor of serotonin uptake: Lilly 110140, 3-(p-trifluoromethylphenoxy)-N-methyl-3-phenylpropyl-amine. Life Sci. 15: 471–479.

    Article  PubMed  CAS  Google Scholar 

  • Wong, D. T. and Murphy, J. M. (1989). Serotonergic mechanisms in alcohol intake, in “Neurobiological and Metabolic Aspects of Alcohol,” G. Y. Sun, Y. H. Wei, P. K. Rudeen etal. (eds.), Humana Press, pp. 133-146.

    Google Scholar 

  • Wong, D. T., Reid, L. R., Bymaster, F. P. et al. (1985b).Chronic effect of fluoxetine, a selective inhibitor of serotonin uptake, on neurotransmitter receptors. J. Neural Transm. 64: 251–269.

    Article  PubMed  CAS  Google Scholar 

  • Wong, D. T., Reid. L. R., Thompson, D. C. and Robertson, D.W. (1990b). LY210448, a new selective inhibitor of serotonin (5-hydroxytryptamine, 5-HT) uptake and a potential antidepressant and antiobesity drug. Abst. 29th Ann. Meeting, Am. Coll. Neuropsychopharmacology, p. 133.

    Google Scholar 

  • Wong, D. T., Robertson, D. W., Bymaster, F. P. et al. (1988).LY227942, an inhibitor of serotonin and norepinephrine uptake: biochemical pharmacology of a potential antidepressant drug. Life Sci. 43: 2049–2057.

    Article  PubMed  CAS  Google Scholar 

  • Wong, D. T. and Threlkeld, P.G. (1993). Tricyclic antidepressant drugs exhibit high affinity for serotonin (5-HT)1C receptors. FASEB J. 7: abst. 1530, p. A264.

    Google Scholar 

  • Wong, D. T., Threlkeld, P. G., Best, K. L. and Bymaster, F. P. (1982).A new inhibitor of norepinephrine uptake devoid of affinity for receptor in rat brain. J. Pharmacol. Exp. Ther. 222: 61–65.

    PubMed  CAS  Google Scholar 

  • Wong, D. T., Threlkeld, P. G. and Robertson, D. W. (1991).Affinity of fluoxetine, its enantiomers and other inhibitors of serotonin uptake for subtypes of serotonin receptors. Neuropsychopharmacology 5: 43–47.

    PubMed  CAS  Google Scholar 

  • Yen, T. T., Wong, D. T., and Bemis, K. G. (1987).Reduction of food consumption and body weight of normal and obese mice by chronic treatment with fluoxetine: A serotonin reuptake inhibitor. Drug Dev. Res. 10: 37–45.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wong, D.T., Bymaster, F.P. (1995). Development of Antidepressant Drugs. In: Tang, L.C., Tang, S.J. (eds) Neurochemistry in Clinical Application. Advances in Experimental Medicine and Biology, vol 363. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1857-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1857-0_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5754-4

  • Online ISBN: 978-1-4615-1857-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics