Skip to main content

Reconstructing the Inflaton Potential

  • Chapter
  • 101 Accesses

Abstract

Inflation involves a period of rapid growth of the Universe. This is most easily illustrated by considering a homogeneous, isotropic Universe with a flat FriedmannRobertson―Walker (FRW) metric described by a scale factor a(t). Here, “rapid growth” means a positive value of ä/a = ―(4πGN/3)(ρ+3p) where ρ is the energy density and p the pressure. It is useful to identify the energy density driving inflation with some sort of scalar “potential” energy density V > 0 that is positive, and results in an effective equation of state \(\rho \simeq - p \simeq V\), which satisfies ä > 0. If one identifies the potential energy as arising from the potential of some scalar field ø, then ø is known as the inflaton field.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. M. Krauss and M. White, Phys. Rev. Lett. 69, 869 (1992); R. L. Davis, H. M. Hodges, G. F. Smoot, P. J. Steinhardt and M. S. Turner, Phys. Rev. Lett. 69, 1856 (1992); A. R. Liddle and D. H. Lyth, Phys. Lett. 291B, 391 (1992); J. E. Lidsey and P. Coles, Mon. Not. R. astr. Soc. 258, 57P (1992); D. S. Salopek, Phys. Rev. Lett. 69, 3602 (1992); F. Lucchin, S. Matarrese, and S. Mollerach, Astrophys. J. Lett. 401, 49 (1992); T. Sourdeep and V. Sahni, Phys. Lett. A 7, 3541 (1992).

    Google Scholar 

  2. A. R. Liddle and D. H. Lyth, Phys. Rep 231, 1 (1993).

    Article  ADS  Google Scholar 

  3. E. J. Copeland, E. W. Kolb, A. R. Liddle and J. E. Lidsey, Phys. Rev. Lett. 71, 219 (1993); Phys. Rev. D48, 2529 (1993).

    Google Scholar 

  4. H. M. Hodges and G. R. Blumenthal, Phys. Rev. D42, 3329 (1990).

    ADS  Google Scholar 

  5. J. M. Bardeen, Phys. Rev. D22, 1882 (1980).

    MathSciNet  ADS  Google Scholar 

  6. J. E. Lidsey, Phys. Lett. 273B, 42 (1991).

    ADS  Google Scholar 

  7. F. Lucchin and S. Matarrese, Phys. Rev. D32, 1316 (1985); Phys. Lett. 164B, 282 (1985).

    Google Scholar 

  8. T. Bunch and P. C. W. Davies, Proc. Roy. Soc. London A360, 117 (1978).

    MathSciNet  ADS  Google Scholar 

  9. G. F. Smoot et al., Astrophys. J. Lett. 396, Ll (1992); E. L. Wright et al., Astrophys. J. Lett. 396, L13 (1992).

    Google Scholar 

  10. A. A. Watson et al, Nature 357, 660 (1992).

    Article  ADS  Google Scholar 

  11. T. Gaier, J. Schuster, J. Gunderson, T. Koch, M. Seiffert, P. Meinhold and P. Lubin, Astrophys. J. Lett. 398, L1 (1992).

    Article  ADS  Google Scholar 

  12. S. J. Maddox, G. Efstathiou, W. J. Sutherland and J. Loveday, Mon. Not. R. astr. Soc. 242, 43p (1990).

    Google Scholar 

  13. M. J. Geller and J. P. Huchra, Science 246, 879 (1989); M. Ramella, M. J. Geller and J. P. Huchra, Astrophys. J. 384, 396 (1992).

    Google Scholar 

  14. W. Saunders et al, Nature 349, 32 (1991); N. Kaiser, G. Efstathiou, R. Ellis, C. Frenk, A. Lawrence, M. Rowan-Robinson and W. Saunders, Mon. Not. R. astr. Soc. 252, 1 (1991).

    Google Scholar 

  15. K. B. Fisher, M. Davis, M. A. Strauss, A. Yahil and J. P. Huchra, Astrophys. J. 389, 188 (1992).

    Article  ADS  Google Scholar 

  16. J. E. Gunn and G. R. Knapp, “The Sloan Digital Sky Survey,” Princeton preprint POP-488 (1992); R. G. Kron in ESO Conference on Progress in Telescope and Instrumentation Technologies, ESO conference and workshop proceeding no. 42, p635, ed. M.-H. Ulrich (1992).

    Google Scholar 

  17. E. Bertschinger and A. Dekel, Astrophys. J. Lett. 336, L5 (1989); A. Dekel, E. Bertschinger and S. M. Faber, Astrophys. J. 364, 349 (1990); E. Bertschinger, A. Dekel, S. M. Faber, A. Dressler and D. Burstein, Astrophys. J. 364, 370 (1990).

    Google Scholar 

  18. P. J. Steinhardt and M. S. Turner, Phys. Rev. D29, 2162 (1984); E. W. Kolb and M. S. Turner, The Early Universe, (Addison-Wesley, New York, 1990).

    Google Scholar 

  19. V. A. Rubakov, M. Sazhin, and A. Veryaskin, Phys. Lett. 115B, 189 (1982); R. Fabbri and M. Pollock, Phys. Lett. 125B, 445 (1983); B. Allen, Phys. Rev. D 37, 2078 (1988); and L. Abbott and M. Wise, Nucl. Phys. B244, 541 (1984).

    Google Scholar 

  20. A. A. Starobinsky, Soy. Astron. Lett. 11, 133 (1985).

    ADS  Google Scholar 

  21. D. S. Salopek and J. R. Bond, Phys. Rev. D42, 3936 (1990); J. E. Lidsey, Phys. Lett. 273B, 42 (1991).

    Google Scholar 

  22. E. D. Stewart and D. H. Lyth, Phys. Lett. 302B, 171 (1993).

    ADS  Google Scholar 

  23. D. H. Lyth, Phys. Rev. D31, 1792 (1985).

    MathSciNet  ADS  Google Scholar 

  24. D. H. Lyth and E. D. Stewart, Phys. Lett. 274B, 168 (1992).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kolb, E.W., Abney, M., Copeland, E.J., Liddle, A.R., Lidsey, J.E. (1995). Reconstructing the Inflaton Potential. In: Kursunoglu, B.N., Mintz, S., Perlmutter, A. (eds) Unified Symmetry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1855-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1855-6_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5753-7

  • Online ISBN: 978-1-4615-1855-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics