Reconstructing the Inflaton Potential

  • Edward W. Kolb
  • Mark Abney
  • Edmund J. Copeland
  • Andrew R. Liddle
  • James E. Lidsey


Inflation involves a period of rapid growth of the Universe. This is most easily illustrated by considering a homogeneous, isotropic Universe with a flat FriedmannRobertson―Walker (FRW) metric described by a scale factor a(t). Here, “rapid growth” means a positive value of ä/a = ―(4πGN/3)(ρ+3p) where ρ is the energy density and p the pressure. It is useful to identify the energy density driving inflation with some sort of scalar “potential” energy density V > 0 that is positive, and results in an effective equation of state \(\rho \simeq - p \simeq V\), which satisfies ä > 0. If one identifies the potential energy as arising from the potential of some scalar field ø, then ø is known as the inflaton field.


Scalar Field Gravitational Wave Density Perturbation Scalar Spectrum Observable Universe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. M. Krauss and M. White, Phys. Rev. Lett. 69, 869 (1992); R. L. Davis, H. M. Hodges, G. F. Smoot, P. J. Steinhardt and M. S. Turner, Phys. Rev. Lett. 69, 1856 (1992); A. R. Liddle and D. H. Lyth, Phys. Lett. 291B, 391 (1992); J. E. Lidsey and P. Coles, Mon. Not. R. astr. Soc. 258, 57P (1992); D. S. Salopek, Phys. Rev. Lett. 69, 3602 (1992); F. Lucchin, S. Matarrese, and S. Mollerach, Astrophys. J. Lett. 401, 49 (1992); T. Sourdeep and V. Sahni, Phys. Lett. A 7, 3541 (1992).Google Scholar
  2. 2.
    A. R. Liddle and D. H. Lyth, Phys. Rep 231, 1 (1993).ADSCrossRefGoogle Scholar
  3. 3.
    E. J. Copeland, E. W. Kolb, A. R. Liddle and J. E. Lidsey, Phys. Rev. Lett. 71, 219 (1993); Phys. Rev. D48, 2529 (1993).Google Scholar
  4. 4.
    H. M. Hodges and G. R. Blumenthal, Phys. Rev. D42, 3329 (1990).ADSGoogle Scholar
  5. 5.
    J. M. Bardeen, Phys. Rev. D22, 1882 (1980).MathSciNetADSGoogle Scholar
  6. 6.
    J. E. Lidsey, Phys. Lett. 273B, 42 (1991).ADSGoogle Scholar
  7. 7.
    F. Lucchin and S. Matarrese, Phys. Rev. D32, 1316 (1985); Phys. Lett. 164B, 282 (1985).Google Scholar
  8. 8.
    T. Bunch and P. C. W. Davies, Proc. Roy. Soc. London A360, 117 (1978).MathSciNetADSGoogle Scholar
  9. 9.
    G. F. Smoot et al., Astrophys. J. Lett. 396, Ll (1992); E. L. Wright et al., Astrophys. J. Lett. 396, L13 (1992).Google Scholar
  10. 10.
    A. A. Watson et al, Nature 357, 660 (1992).ADSCrossRefGoogle Scholar
  11. 11.
    T. Gaier, J. Schuster, J. Gunderson, T. Koch, M. Seiffert, P. Meinhold and P. Lubin, Astrophys. J. Lett. 398, L1 (1992).ADSCrossRefGoogle Scholar
  12. 12.
    S. J. Maddox, G. Efstathiou, W. J. Sutherland and J. Loveday, Mon. Not. R. astr. Soc. 242, 43p (1990).Google Scholar
  13. 13.
    M. J. Geller and J. P. Huchra, Science 246, 879 (1989); M. Ramella, M. J. Geller and J. P. Huchra, Astrophys. J. 384, 396 (1992).Google Scholar
  14. 14.
    W. Saunders et al, Nature 349, 32 (1991); N. Kaiser, G. Efstathiou, R. Ellis, C. Frenk, A. Lawrence, M. Rowan-Robinson and W. Saunders, Mon. Not. R. astr. Soc. 252, 1 (1991).Google Scholar
  15. 15.
    K. B. Fisher, M. Davis, M. A. Strauss, A. Yahil and J. P. Huchra, Astrophys. J. 389, 188 (1992).ADSCrossRefGoogle Scholar
  16. 16.
    J. E. Gunn and G. R. Knapp, “The Sloan Digital Sky Survey,” Princeton preprint POP-488 (1992); R. G. Kron in ESO Conference on Progress in Telescope and Instrumentation Technologies, ESO conference and workshop proceeding no. 42, p635, ed. M.-H. Ulrich (1992).Google Scholar
  17. 17.
    E. Bertschinger and A. Dekel, Astrophys. J. Lett. 336, L5 (1989); A. Dekel, E. Bertschinger and S. M. Faber, Astrophys. J. 364, 349 (1990); E. Bertschinger, A. Dekel, S. M. Faber, A. Dressler and D. Burstein, Astrophys. J. 364, 370 (1990).Google Scholar
  18. 18.
    P. J. Steinhardt and M. S. Turner, Phys. Rev. D29, 2162 (1984); E. W. Kolb and M. S. Turner, The Early Universe, (Addison-Wesley, New York, 1990).Google Scholar
  19. 19.
    V. A. Rubakov, M. Sazhin, and A. Veryaskin, Phys. Lett. 115B, 189 (1982); R. Fabbri and M. Pollock, Phys. Lett. 125B, 445 (1983); B. Allen, Phys. Rev. D 37, 2078 (1988); and L. Abbott and M. Wise, Nucl. Phys. B244, 541 (1984).Google Scholar
  20. 20.
    A. A. Starobinsky, Soy. Astron. Lett. 11, 133 (1985).ADSGoogle Scholar
  21. 21.
    D. S. Salopek and J. R. Bond, Phys. Rev. D42, 3936 (1990); J. E. Lidsey, Phys. Lett. 273B, 42 (1991).Google Scholar
  22. 22.
    E. D. Stewart and D. H. Lyth, Phys. Lett. 302B, 171 (1993).ADSGoogle Scholar
  23. 23.
    D. H. Lyth, Phys. Rev. D31, 1792 (1985).MathSciNetADSGoogle Scholar
  24. 24.
    D. H. Lyth and E. D. Stewart, Phys. Lett. 274B, 168 (1992).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Edward W. Kolb
    • 1
    • 2
  • Mark Abney
    • 2
  • Edmund J. Copeland
    • 3
  • Andrew R. Liddle
    • 3
  • James E. Lidsey
    • 1
  1. 1.NASA/Fermilab Astrophysics CenterFermi National Accelerator LaboratoryBataviaUSA
  2. 2.Department of Astronomy and AstrophysicsEnrico Fermi Institute The University of ChicagoChicagoUSA
  3. 3.School of Mathematical and Physical SciencesUniversity of SussexBrightonUK

Personalised recommendations