Advertisement

Baryogenesis from Electroweak Strings

  • Manuel Barriola

Abstract

One implication of the standard hot big bang cosmology is that from the relics of the early universe we should in principle expect the universe to contain the same abundance of baryons and antibaryons. However there exist compelling empirical evidence that the universe is made out of matter with relative few antimatter. From the present asymmetry we can extrapolate that at the energy scale of the electroweak phase transition there was one part in 108 more matter than antimatter in the universe. The goal of baryogenesis is to explain why there is this asymmetry between the amount of matter and antimatter i.e. there is a nonbanishing ratio between the net baryon number density and entropy density (nB/s) in the universe.

Keywords

Higgs Mass Baryon Number Baryon Asymmetry Electroweak Phase Transition Background Magnetic Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. D. Sakharov. JETP Lett. 5:24 (1967).ADSGoogle Scholar
  2. 2.
    J. Preskill, Phys. Rev. Lett. P 43, 1365 (1979).ADSCrossRefGoogle Scholar
  3. 3.
    A. H. Guth, Phys. Rev. D 23, 347 (1981).ADSCrossRefGoogle Scholar
  4. 4.
    A.G. Cohen, D.B. Kaplan and A.E. Nelson, Annu. Rev. Nucl. Part. Sci 43 27 (1993).ADSCrossRefGoogle Scholar
  5. 5.
    N. Turok, in `Perspectives on Higgs Physics’, ed. G. Kane (World Scientific, Singapore, 1992).Google Scholar
  6. 6.
    A.D. Dolgov UM-AC.93–91 preprint (1993).Google Scholar
  7. 7.
    N. S. Manton Phys. Rev. D 28, 2019 (1983): F. R. Klinkhamrner and N. S. Manton, Phys Rev. D 30, 2212 (1984).Google Scholar
  8. 8.
    R. H. Brandenberger and A.C. Davis, Phys. Lett. B308, 79 (1993).ADSGoogle Scholar
  9. 9.
    See 4and references therein.Google Scholar
  10. 10.
    R. Brandenberger and A. C. Davis, Phys. Lett. B308, 79 (1993).ADSGoogle Scholar
  11. 11.
    R. Brandenberger, A. C. Davis and M. Trodden, BROWN-HET-935 preprint (1994).Google Scholar
  12. 12.
    T. Vachaspati, Phys. Rev. Lett. 68, 1977 (1992). For earlier work see Y. Nambu, Nucl. Phys. B130, 505 (1977); M.B. Einhorn and A. Savit, Phys. Lett. 77B, (1978) 295; N.S. Manton, Phys. Rev. D28, (1983) 2018.Google Scholar
  13. 13.
    M. A. Earnshaw and M. James Phys. Rev. d48, 5818 (1993).ADSGoogle Scholar
  14. 14.
    L. Perivolaropoulos Phys. Lett. B316, 528 (1993).MathSciNetADSGoogle Scholar
  15. 15.
    T. Vachaspati and R. Watkins, Phys. Lett. B318, 163 (1993); T.D. Lee, Phys. Rep. 23C, 254 (1976).Google Scholar
  16. 16.
    G. Dvali and G. Senjanovic, Phys. Rev. Lett. 71, 2376 (1993).ADSCrossRefGoogle Scholar
  17. 17.
    G. Dvali and G. Senjanovic IC/94 preprint (1994).Google Scholar
  18. 18.
    C.J. Hogan, Phys. Rev. Lett. 51 (1983) 1488; M.S. Turner and L.W. Widrow, Phys. Rev. D37 (1988); W. Garretson, G.B. Field and S.M. Carroll, Phys. Rev. D46 (1992) 5346.Google Scholar
  19. 19.
    T. Vachaspati, Phys. Lett. B265, 258 (1991).ADSGoogle Scholar
  20. 20.
    K. Enqvist and P. Olesen NORDITA-94/6 preprint (1994).Google Scholar
  21. 21.
    G.K. Savvidy, Phys. Lett. B71 (1977) 133.ADSGoogle Scholar
  22. 22.
    I want to thank George Field for pointing this out when I showed him the calculation.Google Scholar
  23. 23.
    T. Vachaspati and G. Field, TU/94 preprint (1994).Google Scholar
  24. 24.
    N. Turok and J. Zadrozny, Phys. Rev. Lett. 65, 2331, (1990).ADSCrossRefGoogle Scholar
  25. 25.
    M. Dine and S. Thomas SCIPP 94/01 preprint (1994).Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Manuel Barriola
    • 1
  1. 1.Harvard-Smithsonian CFACambridgeUSA

Personalised recommendations