Ascending Noradrenergic and Serotonergic Systems in the Human Brainstem

  • Kerry G. Baker
  • Glenda M. Halliday
Part of the Advances in Behavioral Biology book series (ABBI, volume 43)

Abstract

Together with Istvan Törk, we have examined the morphology and distribution of noradrenergic (Baker et al., 1989) and serotonergic neurons in the human brain (Törk and Hornung, 1990; Baker et al, 1991a; Baker et al., 1991b). As in other species, these neurons are confined to anatomically distinct regions. In rats, histofluorescent and immunohistochemical studies have shown that both noradrenergic (Morrison et al., 1978; Levitt et al., 1984) and serotonergic (Lidov et al., 1980) fibers project diffusely to all regions of the cerebral cortex. Although there is variation in the pattern of cortical arborization (Levitt and Moore, 1978; Morrison et al., 1978; Lidov et al., 1980; Steinbusch, 1981), both systems have uniform density of fibers which does not vary substantially across neocortical regions (Morrison et al., 1978; Lidov et al., 1980; Levitt et al., 1984). However in primates, noradrenergic and serotonergic afferents to the cortex show regional and laminar innervation patterns which have a high degree of specificity not found in the rat (Lewis et al., 1986). It has been postulated that these two systems are counteractive (Brodie and Shore, 1957). Noradrenergic neurons have been shown to fire frequently during watchfulness and vigilance whereas serotonergic neurons are quiescent during the same activity in cats (Jacobs and Azmitia, 1992).

Keywords

Fatigue Depression Dopamine Flare Noradrenaline 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adell, A., A. Carceller, and F. Artigas (1991) Regional distribution of extracellular 5-hydroxytryptamine and 5-hydroxyindoleacetic acid in the brain of freely moving rats. J. Neurochem. 56: 709–712.PubMedCrossRefGoogle Scholar
  2. Aghajanian, G.K., and R.Y. Wang (1978) Physiology and pharmacology of central serotonergic neurons. In M.A. Lipton, A. DiMascio, and K.F. Killam (eds): Psychopharmacology: A Generation of Progress. New York: Raven Press, pp. 171–183.Google Scholar
  3. Aghajanian, G.K., and C.P. Vandermaelen (1986) Specific systems of the reticular core: serotonin. In V.B. Mountcastle, F.E. Bloom, and S.E. Geiger (eds): Handbook of Physiology. Vol. IV. Intrinsic Regulatory Systems of the Brain. Baltimore: Williams and Wilkins, pp. 237–256.Google Scholar
  4. Amarai, D.G., and H.M. Sinnamon (1977) The locus coeruleus: Neurobiology of a central noradrenergic nucleus. Prog. Neurobiol. 9: 147–196.CrossRefGoogle Scholar
  5. Andén, N.-E., A. Dahlström, K. Fuxe, K Larsson, L. Olson, and U. Ungerstedt (1966) Ascending monoamine neurons to the telencephalon and diencephalon. Acta Physiol. Scand. 67: 313–326.CrossRefGoogle Scholar
  6. Asin, K.E., and H.C. Fibiger (1983) An analysis of neuronal elements within the median nucleus of the raphe that mediate lesion-induced increases in locomotor activity. Brain Res. 268: 211–223.PubMedCrossRefGoogle Scholar
  7. Asnis, G.M., S. Wetzler, and H.M. van Praag (1992) The interrelationship of serotonin and norepinephrine in man. Clin. Neuropharm. 15 (Suppl. l): 620A–621A.CrossRefGoogle Scholar
  8. Aston-Jones, G., M. Ennis, V.A. Pieribone, W.T. Nickell, and M.T. Shipley (1986) The brain nucleus locus coeruleus: Restricted afferent control of a broad efferent network. Science 234: 734–737.PubMedCrossRefGoogle Scholar
  9. Aston-Jones, G., M.T. Shipley, M. Ennis, J.T. Williams, and V.A. Pieribone (1990) Restricted afferent control of locus coeruleus neurons revealed by anatomic, physiologic and pharmacologic studies. In C.A. Marsden and D.J. Heal (eds): The Pharmacology of Noradrenaline in the Central Nervous System. Oxford: Oxford University Press.Google Scholar
  10. Aston-Jones, G., H. Akaoka, P. Charlety, and G. Chouvet (1991) Serotonin selectively attenuates glutamateevoked activation of noradrenergic locus coeruleus neurons. N. Neurosci. 11: 760–769.Google Scholar
  11. Azmitia, E.C. (1978) The serotonin-producing neurons of the midbrain median and dorsal raphe nuclei In L.L. Iversen, S.D. Iversen and S.H. Snyder (eds): Handbook of Psychopharmacology. New York: Plenum Press, pp. 233–314.Google Scholar
  12. Azmitia E.C., and M. Segal (1978) An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei in the rat. J. Comp. Neurol. 179: 641–667.PubMedCrossRefGoogle Scholar
  13. Baker, K.G., I. Törk, J.-P. Hornung, and P. Halasz (1989) The human locus coeruleus complex: An immunohistochemical and three dimensional reconstruction study. Exp. Brain Res. 77: 257–270.PubMedCrossRefGoogle Scholar
  14. Baker, K.G., G.M. Halliday, and I. Törk (1990) Cytoarchitecture of the human dorsal raphe nucleus. J. Comp. Neurol. 301: 147–161.PubMedCrossRefGoogle Scholar
  15. Baker, K.G., G.M. Halliday, P. Halasz, J-P. Hornung, L.B. Geffen, R.G.H. Cotton, and I. Törk (1991a) Cytoarchitecture of serotonin-synthesizing neurons in the pontine tegmentum of the human brain. Synapse 7: 301–320.PubMedCrossRefGoogle Scholar
  16. Baker, K.G., G.M. Halliday, J-P. Hornung, L.B. Geffen, R.G.H. Cotton, and I. Törk (1991b) Distribution, morphology and number of monoamine-synthesizing and substance P-containing neurons in the human dorsal raphe nucleus. Neuroscience, 42: 757–775.PubMedCrossRefGoogle Scholar
  17. Björklund, A., and O Lindvall (1986) Catecholaminergic brain stem regulatory systems. In V.B. Mountcastle, F.E. Bloom and S.E. Geiger (eds): Handbook of Physiology. Vol. IV Intrinsic Regulatory Systems of the Brain. Baltimore: Williams and Wilkins, pp. 155–235.Google Scholar
  18. Bobillier, P., F. Petitjean, D. Salvert, M. Ligier, and S. Seguin (1975) Differential projections of the nucleus raphe dorsalis and nucleus raphe centralis as revealed by autoradiography. Brain Res. 55: 205–210.CrossRefGoogle Scholar
  19. Briley, M., and C Moret (1993) Neurobiological mechanisms involved in antidepressant therapies. Clin. Neuropharm. 16: 387–400.CrossRefGoogle Scholar
  20. Brodai, A. (1957) The Reticular Formation of the Brain Stem: Anatomical Aspects and Functional Correlations. Edinburgh: Oliver and Boyd.Google Scholar
  21. Brodai, A., F. Walberg, and E. Taber (1960) The raphe nuclei of the brain stem in the cat. III. Afferent connections. J. Comp. Neurol. 114: 261–281.CrossRefGoogle Scholar
  22. Brodie, B.B and P.A. Shore (1957) A concept for a role of serotonin and norepinephrine as chemical mediators in the brain. Ann. N.Y. Acad. Sci. 66: 631–642.PubMedCrossRefGoogle Scholar
  23. Brown, R.M., A.M. Crane, and P.W. Goldman (1979) Regional distribution of monoamines in the cerebral cortex and subcortical structures of the rhesus monkey: concentrations and in vivo synthesis rates. Brain Res. 168: 133–150.PubMedCrossRefGoogle Scholar
  24. Chan-Palay, V., and E. Asan (1989) Quantitation of catecholamine neurons in the locus coeruleus in human brains of normal young and older adults and in depression. J Comp. Neurol. 287: 357–372.PubMedCrossRefGoogle Scholar
  25. Clement, H.W., D. Gemsa, and W. Wesemann (1992) Serotonin-norepinephrine interactions: a voltammetric study on the effect of serotonin receptor stimulation followed in the N. raphe dorsalis and the locus coeruleus of the rat. J. Neural Transm. [Gen.Sect.] 88: 11–23.CrossRefGoogle Scholar
  26. Conrad, L.C.A., C.M. Leonard, and D.W. Pfaff (1974) Connections of the median and dorsal raphe nuclei in the rat: An autoradiographic and degeneration study. J. Comp. Neurol. 156: 179–206.PubMedCrossRefGoogle Scholar
  27. Cooper, J.R., F.E. Bloom, and R.H. Roth (1991) The Biochemical Basis of Neuropharmacology. New York: Oxford University Press.Google Scholar
  28. Cotton, R.G.H., W. McAdam, I. Jennings, and F.J. Morgan (1988) A monoclonal antibody to aromatic amino acid hydroxylases. Identification of the epitope. Biochem. J. 255: 193–196.PubMedGoogle Scholar
  29. Dahlström, A., and K. Fuxe (1964) Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta. Physiol. Scand. 62 (Suppl. 232): 1–55.Google Scholar
  30. Delgado, P.L., D.S. Charney, L.H. Price, G.K. Aghajanian, H. Landis, and G.R. Heninger (1990) Serotonin function and the mechanism of antidepressant action. Arch. Gen. Psychiatry. 47: 411–418.PubMedCrossRefGoogle Scholar
  31. Ennis, M., and G. Aston-Jones (1986) A potent excitatory input to the locus coeruleus from the ventrolateral medulla. Neurosci. Lett. 71: 299–305.PubMedCrossRefGoogle Scholar
  32. Foote, S.L., F.E. Bloom, and G. Aston-Jones (1983) Nucleus locus ceruleus: New evidence of anatomical and physiological specificity. Physiol. Rev. 63: 844–914.PubMedGoogle Scholar
  33. Fuller, R.W. (1992) Clinical applications of 5-HT uptake inhibitors. Adv. Biosci. 85: 255–347.Google Scholar
  34. Fuxe, K. (1965) The distribution of monoamine terminals in the central nervous system. Acta Physiol. Scand. 64 (Suppl. 247): 37–85.Google Scholar
  35. Halasz, P., and P. Martin (1985) Magellan program for quantitative analysis of histological sections. Sydney: University of New South Wales.Google Scholar
  36. German, D.C., B.S. Walker, K. Manaye, W.K. Smith, D.J. Woodward, A.J. North (1988) The human locus coeruleus: computer reconstruction of cellular distribution. J. Neurosci. 8: 1776–1788.PubMedGoogle Scholar
  37. Gershon, M.D., and G.M. Jonakait (1979) Uptake and release of 5-hydroxytryptamine by enteric 5-hydroxytryptaminergic neurones: Effects of fluoxetine (Lilly 110140) and chlorimipramine. Br. J. Pharmac. 66: 7–9.CrossRefGoogle Scholar
  38. Haan, E.A., I.G. Jennings, A.C. Cuello, H. Nakata, C.W. Chow, R. Kushinsky, J. Brittingham, and R.G.H. Cotton (1987) A monoclonal antibody recognizing all three aromatic amino acid hydroxylases allows identification of serotonergic neurons in human brain. Brain Res. 426: 19–27.PubMedCrossRefGoogle Scholar
  39. Halliday, G.M., Y.W. Li, T. H. Joh, R.G.H. Cotton, L.B. Geffen, and W.W. Blessing, (1988) Topography of monoamine-and substance P-containing neurons in the human pons and midbrain. In M. Sandler, A. Dahlström and R. Belmaker (eds): Neurology and Neurobiology. Vol. 42. Progress in Catecholamine Research. Part Central Aspects. New York: L.R. Liss, pp. 179–185.Google Scholar
  40. Hornung, J-P., J-M. Fritschy, and I. Törk (1990) Distribution of two morphological types of serotonergic axons in the cerebral cortex of the marmoset monkey. J. Comp. Neurol. 297: 165–181.PubMedCrossRefGoogle Scholar
  41. Hsu, S.M., L. Raine, and H. Fanger (1981) Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J. Histochem. Cytochem. 29: 577–580.PubMedCrossRefGoogle Scholar
  42. Imai, H., D.A. Steindler, and S.T. Kitai (1986) The organization of divergent axonal projections from the midbrain raphe nuclei in the rat. J. Comp. Neurol. 243: 363–380.PubMedCrossRefGoogle Scholar
  43. Jacobs, L. (1985) An overview of brain serotonergic unit activity and its relevance to the neuropharmacology of serotonin. In A.R. Green (ed): Neuropharmacology of Serotonin. Oxford: Oxford University Press, pp. 196–217.Google Scholar
  44. Jacobs, B. L. (1986) Motor activity and the brain serotonin system. In S. Fahn (ed): Advances in Neurology. Vol. 45. Myoclonus. New York: Raven Press, pp. 481–491.Google Scholar
  45. Jacobs, B.L., and E.C. Azmitia (1992) Structure and function of the brain serotonin system. Physiol. Rev. 72: 165–229.PubMedGoogle Scholar
  46. Jacobs, B.L., W.D. Wise, and K.M. Taylor (1974) Differential behavioral and neurochemical effects following lesions of the dorsal or median raphe nuclei in rats. Brain Res. 79: 353–361.PubMedCrossRefGoogle Scholar
  47. Jones, B.E., and T.-Z. Yang (1985) The efferent projections from the reticular formation and the locus coeruleus studied by anterograde and retrograde axonal transport in the rat. J. Comp. Neurol. 242: 56–92.PubMedCrossRefGoogle Scholar
  48. Kaitin, K.I., D.L. Bliwise, C Gleason, G. Nino-Murcia, W.C. Dement, and B. Libet (1986) Sleep disturbance produced by electrical stimulation of the locus coeruleus in a human subject. Biol. Psychiatry 21: 710–716.PubMedCrossRefGoogle Scholar
  49. Kalkman, H.O., and J.R. Fozard (1991) 5HT receptor types and their role in disease. Opin. Neurol. Neurosurg. 4: 560–565.Google Scholar
  50. Köhler, C and H. Steinbusch (1982) Identification of serotonin and non-serotonin-containing neurons of the mid-brain raphe projecting to the entorhinal area and the hippocampal formation. A combined immunohistochemical and fluorescent retrograde tracing study in the rat brain. Neuroscience 7: 951–975.PubMedCrossRefGoogle Scholar
  51. Kolta, A., R. Dubuc, and J.P. Lund (1993) An immunocytochemical and autoradiographic investigation of the serotoninergic innervation of trigeminal mesencephalic and motor nuclei in the rabbit. Neuroscience 53: 1113–1126.PubMedCrossRefGoogle Scholar
  52. Kosofsky, B.E., and M.E. Molliver (1987) The serotonergic innervation of cerebral cortex: different classes of axon terminals arise from dorsal and median raphe nuclei. Synapse 1: 153–168.PubMedCrossRefGoogle Scholar
  53. Kramer, P.D., (1993) Listening to Prozac. New York: Viking.Google Scholar
  54. Kurlan, R., P.G. Como, C. Deeley, M. McDermott, and M.P. McDermott (1993) A pilot controlled study of fluoxetine for obsessive-compulsive symptoms in children with Tourette’s syndrome. Clin. Neuropharm. 16: 167–172.CrossRefGoogle Scholar
  55. Levitt, P., P. Rakic, and P.S. Goldman-Rakic (1984) Comparative assessment of monoamine afferents in mammalian cerebral cortex. In L. Descarries, T. Reader and H.H. Jasper, (eds): Monoamine Innervation of Cerebral Cortex. New York: Alan R. Liss, pp. 41–59.Google Scholar
  56. Lewis, D.A., M.J. Campbell, S.L. Foote, and J.H. Morrison (1986) The monoaminergic innervation of primate neocortex. Human Neurobiol. 5: 181–188.Google Scholar
  57. Lidov, H.G.W., and M.E. Molliver (1982) Immunohistochemical study of the development of serotonergic neurons in the rat CNS. Brain Res. Bull. 9: 559–604.PubMedCrossRefGoogle Scholar
  58. Lidov, H.G.W., R. Grzanna, and M.E. Molliver (1980) The serotonin innervation of the cerebral cortex in the rat: an immunohistochemical analysis. Neuroscience 5: 207–227.PubMedCrossRefGoogle Scholar
  59. Lindvall, O. and A. Björklund (1984) General organization of cortical monoamine systems. In L. Descarries, T. Reader and H.H. Jasper, (eds): Monoamine Innervation of Cerebral Cortex. New York: Alan R. Liss, pp. 9–40.Google Scholar
  60. Lindvall, O., A. Björklund, A. Nobin, and U. Stenevi (1974) The adrenergic innervation of the rat thalamus as revealed by the glyoxylic acid fluorescence method. J. Comp. Neurol. 154: 317–348.PubMedCrossRefGoogle Scholar
  61. Lorens, S.A., and H.C. Guldberg (1974) Regional 5-hydroxytryptamine following selective mid-brain raphe lesions in the rat. Brain Res. 78: 45–56.PubMedCrossRefGoogle Scholar
  62. Loughlin, S.E., and J.H. Fallon (1985) Locus Coeruleus. In G. Paxinos (ed): The Rat Nervous System. Sydney: Academic Press, pp. 79–93.Google Scholar
  63. Loughlin, S.E., S.L. Foote, and F.E. Bloom (1986) Efferent projections of nucleus locus coeruleus: topographic organization of cells of origin demonstrated by three-dimensional reconstruction. Neuroscience 18: 291–306.PubMedCrossRefGoogle Scholar
  64. Loy, R., D.A. Koziell, J.D. Lindsey, and R.Y. Moore (1980) Noradrenergic innervation of the adult rat hippocampal formation. J. Comp. Neurol. 189: 699–710.PubMedCrossRefGoogle Scholar
  65. Maciewicz, R., E. Taber-Pierce, S. Ronner, and W.E. Foote (1981) Aerents to the central superior raphe nucleus in the cat. Brain Res. 216: 414–421.PubMedCrossRefGoogle Scholar
  66. Markowitsch, H.J., and E. Irle (1981) Widespread cortical projections of the ventral tegmental area and of other brain stem structures in the cat. Exp. Brain Res. 41: 233–246.PubMedGoogle Scholar
  67. Marshall, K.C., and H. Xiong (1991) Modulation of amino acid neurotransmitter actions by other neurotransmitters: some examples. Can. J. Physiol. Pharmacol. 69: 1115–1122.PubMedCrossRefGoogle Scholar
  68. Martin, G.F., R. Waltzer, and R.P. Vertes (1985) Major projections of the reticular formation. In G. Paxinos (ed): The Rat Nervous System. Sydney: Academic Press, pp. 29–42.Google Scholar
  69. Meltzer, H.Y., and M.T. Lowry (1987) The serotonin hypothesis of depression. In H.Y. Meltzer, (ed.): Psychopharmacology: The Third Generation of Progress. New York: Raven Press.Google Scholar
  70. Moore, R.Y., A.E. Halaris, and B.E. Jones (1978) Serotonin neurons of the midbrain raphe: Ascending projections. J. Comp. Neurol. 180: 417–438.PubMedCrossRefGoogle Scholar
  71. Moore, R.Y., and F.E. Bloom (1979) Central catecholamine neuron systems: Anatomy and physiology of the norepinephrine and epinephrine systems. Ann. Rev. Neurosci. 2: 113–168.PubMedCrossRefGoogle Scholar
  72. Morrison, J.H., S.L. Foote, D. O’Connor, and F.E. Bloom (1982) Laminar, tangential and regional organization of the noradrenergic innervation of monkey cortex: dopamine-β-hydroxylase immunohistochemistry. Brain Res. Bull. 9: 309–319.PubMedCrossRefGoogle Scholar
  73. Morrison, J.H., R. Grzanna, M.E. Molliver, and J.T. Coyle (1978) The distribution and orientation of noradrenergic fibers in neocortex of the rat: An immunofluorescence study. J. Comp. Neurol. 181: 17–40.PubMedCrossRefGoogle Scholar
  74. Morrison, J.H., and P.J. Magistretti (1983) Monoamines and peptides in cerebral cortex. Contrasting principles of cortical organization. Trends Neurosci. 6: 146–151.CrossRefGoogle Scholar
  75. Mulligan, K.A., and I. Törk (1988) Serotoninergic innervation of the cat cerebral cortex. J. Comp. Neurol. 270: 86–110.PubMedCrossRefGoogle Scholar
  76. Nieuwenhuys, R. (1985) Chemoarchitecture of the Brain. Berlin: Springer-Verlag.CrossRefGoogle Scholar
  77. O’Hearn, E., and M.E. Molliver (1984) Organization of raphe cortical projections in rat: a quantitative retrograde study. Brain Res. Bull. 13: 709–726.PubMedCrossRefGoogle Scholar
  78. Ohm, T.G., R. Heilmann, and H. Braak (1989) The human oral raphe system: Architectonics and neuronal types in pigment-Nissl preparations. Anat. Embryol. 180: 37–43.PubMedCrossRefGoogle Scholar
  79. Olszewski, J., and D. Baxter (1954) Cytoarchitecture of the Human Brain Stem. Basel: S. Karger.Google Scholar
  80. Palkovits, M., L. Záborszky, A. Feminger, E. Mezey, M.I.K. Fekete, J.P. Herman, B Kanyicska, and D. Szabo (1980) Noradrenergic innervation of the rat hypothalamus: experimental biochemical and electron microscopic studies. Brain Res. 191: 161–171.PubMedCrossRefGoogle Scholar
  81. Parent, A. (1981) The anatomy of serotonin-containing neurons across phylogeny. In B.L. Jacobs and A. Gelperin (eds): Serotonin Neurotransmission and behavior. Cambridge: MIT Press, pp. 3–34.Google Scholar
  82. Parent, A., D. Poctras, and L. Dube (1984) Comparative anatomy of central monoaminergic systems. In A. Björklund and T. Hökfelt (eds): Handbook of Chemical Neuroanatomy. Amsterdam: Elsevier.Google Scholar
  83. Pasquier, D.A., and D.J. Villar (1982) Specific serotonergic projections to the lateral geniculate body from the lateral cell groups of the dorsal raphe nucleus. Brain Res. 249: 142–146.PubMedCrossRefGoogle Scholar
  84. Peroutka, S.J. (1988) 5-hydroxytryptamine receptor subtypes. In W.M. Cowan, E.M. Shooter, C.F. Stevens, R.F. Thompson (eds): Ann. Rev. Neuroscience. 11: 45–60.Google Scholar
  85. Rossi, G.F., and A. Zanchetti (1957) The brain stem reticular formation: Anatomy and physiology. Arch. Ital. Biol. 95: 199–435.Google Scholar
  86. Sakai, K., D. Salvert, M. Touret, and M. Jouvet (1977) Afferent connections of the nucleus raphe dorsalis in the cat as visualized by the horseradish peroxidase technique. Brain Res. 137: 11–35.PubMedCrossRefGoogle Scholar
  87. Saper, C.B., L.W. Swanson, and W.M. Cowan (1979) An autoradiographic study of the afferent connections of the lateral hypothalamic area in the rat. J. Comp. Neurol. 183: 689–706.PubMedCrossRefGoogle Scholar
  88. Siever, L.J., R.S. Kahn, B.A Lawlor, R.L. Trestman, T.L. Lawrence, and E.F. Coccaro (1991) Critical issues in defining the role of serotonin in psychiatric disorders. Pharmacol. Rev. 43: 509–525.PubMedGoogle Scholar
  89. Stark, P., and D.C. Hardison (1985) A review of multicenter controlled studies of fluoxetine vs. Imipramine and placebo in outpatients with major depressive disorder. J. Clin. Psychiatry. 46: 53–58.PubMedGoogle Scholar
  90. Steinbusch, H.W.M. (1981) Distribution of serotonin-immunoreactivity in the central nervous system of the rat-cell bodies and terminals. Neuroscience 6: 557–618.PubMedCrossRefGoogle Scholar
  91. Sulser, F. (1990) Mode of action of antidepressants: from traditional biochemical to molecular neuropsychopharmacology. In B. Leonard, and P. Spencer (eds): Antidepressants: 30 years on. London: Clinical Neuroscience Publishers.Google Scholar
  92. Tanaka, C., M. Ishikawa, and S. Shimada, (1982) Histochemical mapping of catecholaminergic neurons and their ascending fiber pathways in the rhesus monkey brain. Brain Res. Bull. 9: 255–270.PubMedCrossRefGoogle Scholar
  93. Tian, W., M.J. Eaton, J.L. Goudreau, K.J. Lookingland, and K.E. Moore (1993) Neurochemical evidence that S-hydroxytryptaminergic neurons tonically inhibit noradrenergic neurons terminating in the hypothalamus. Brain Res. 607: 215–221.PubMedCrossRefGoogle Scholar
  94. Törk, I., and J.-P. Homung (1990) Raphe nuclei and serotonin containing systems. In G. Paxinos (ed): The human nervous system. San Diego: Academic Press.Google Scholar
  95. Underwood, M.D., R.W. Smith, M.L. Allen, J.J. Mann, and V. Arango (1993) Morphometry of the locus coeruleus in alcoholics, Alcohol: Exp. Clin. Res. 17: 128.Google Scholar
  96. Ungerstedt, U. (1971) Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol. Scand.Suppl. 367: 1–48.PubMedGoogle Scholar
  97. Van de Kar, L.D., and S.A. Lorens (1978) Differential serotonergic innervation of individual hypothalamic nuclei and other forebrain regions by the dorsal and median midbrain raphe nuclei. Brain Res. 162: 45–54.Google Scholar
  98. Van den Pol, A.N., R.S. Herbst, and J.F. Powell (1984) Tyrosine hydroxylase-immunoreactive neurons of the hypothalamus: a light and electron microscopic study. Neuroscience 13: 1117–1156.PubMedCrossRefGoogle Scholar
  99. Vertes, R.P., and G.F. Martin (1988) Autoradiographic analysis of ascending projections from the pontine and mesencephalic reticular formation and the median raphe nucleus in the rat. J. Comp. Neurol. 275: 511–541.PubMedCrossRefGoogle Scholar
  100. Villar, M.J., M.L. Vitale, T. Hökfelt, and A.A.J. Verhofstad (1988) Dorsal raphe serotoninergic branching neurons projecting both to the lateral geniculate body and superior colliculus: A combined retrograde tracing-immunohistochemical study in the rat. J. Comp. Neurol. 277: 126–140.PubMedCrossRefGoogle Scholar
  101. Westlund, K.N., and J.D. Coulter (1980) Descending projections of the locus coeruleus and subcoeruleus/medial parabrachial nuclei in monkey: Axonal transport studies and dopamine ß-hydroxylase immunocytochemistry. Brain Res. Rev. 2: 235–264.CrossRefGoogle Scholar
  102. Wilson, M.A., and M.E. Molliver (1988) The anatomic organization of serotonergic projections to neocortex in the primate. Soc. Neurosci. Abstr. 14: 210.Google Scholar
  103. Wirtshafter, D., and K.E. Asin (1986) Discrimination learning and reversal following electrolytic lesions of the median raphe nucleus. Physiol. Behav. 37: 213–219.PubMedCrossRefGoogle Scholar
  104. Wirtshafter, D., M.A. Klitenick, and K.E. Asin (1987a) Evidence against serotonin involvement in the hyperactivity produced by injections of muscimol into the median raphe nucleus. Pharmacol. Biochem. Behav. 27: 45–52.PubMedCrossRefGoogle Scholar
  105. Wirtshafter, D., T. R. Stratford, and K. E. Asin (1987b) Evidence that serotonergic projections to the substantia nigra in the rat arise in the dorsal, but not the median, raphe nucleus. Neurosci. Lett. 77: 261–266.PubMedCrossRefGoogle Scholar
  106. Yazici, O., F. Aricioglu, G. Gürvit, A. Üçok, Y. Tastaban, O. Canberk, M. Ozgüroglu, T. Durat, and D. Sahin (1993) Noradrenergic and serotoninergic depression? J. Affective Dis. 27: 123–129.CrossRefGoogle Scholar
  107. Zhou, F-C., and E.C. Azmitia (1983) Effects of 5,7-dihydroxytryptamine on HRP retrograde transport from hippocampus to midbrain raphe nuclei in the rat. Brain Res. Bull. 10: 445–451.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Kerry G. Baker
    • 1
  • Glenda M. Halliday
    • 1
    • 2
  1. 1.Department of PathologyUniversity of SydneyAustralia
  2. 2.Prince of Wales Medical Research InstituteRandwickAustralia

Personalised recommendations