Skip to main content

Chaos in Plasmas: A Case Study in Thermionic Discharges

  • Chapter
  • 187 Accesses

Abstract

During the last six years a growing interest arose in the study of low frequency oscillations in plasma discharges and their transition to chaos. The first observation of a period-doubling route to chaos was reported nearly simultaneously from a helium glow discharge1 and from a filament cathode discharge at low pressure.2 In the helium glow experiment, moving striations were observed in a Plücker tube that cause periodic modulations of the discharge current. With increasing current the characteristic sequence of subharmonics at 1/2, 1/4, 1/8, and 1/16 of the natural frequency was observed, which ends up in an irregular, apparently chaotic state. More complex routes with mixtures of period doublings and quintuplings were also reported.1 The conditions in the filament cathode discharge are fundamentally different, because of its low pressure (p = 0.1 Pa), large dimension (d = 1.8 m), and mode of operation. In this experiment, the plasma is not self-oscillating but periodically pulsed, and period doubling and quadrupling is found when the pulse amplitude is increased. The obvious similarity of the dynamical behavior in so different discharge situations stimulated a number of more detailed investigations in this field. An intermittency route to chaos in a filament cathode discharge was reported for a periodically driven system.3 Self-oscillations in such discharges show period-doubling and intermittency4 as well as a quasiperiodic5 route to chaos. A low correlation dimension was found for this kind of undriven chaos.6

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Braun, J. A. Lisboa, R. E. Francke, and J. A. C. Gallas, Observation of deterministic chaos in electrical discharges in gases, Phys. Rev. Lett. 59: 613 (1987)

    Article  ADS  Google Scholar 

  2. P. Y. Cheung and A. Y. Wong, Chaotic behavior and period doubling in plasmas, Phys. Rev. Lett. 59: 551 (1987)

    Article  ADS  Google Scholar 

  3. P. Y. Cheung, S. Donovan, and A. Y. Wong, Observation of intermittent chaos, Phys. Rev. Lett. 61: 1360 (1988)

    Article  ADS  Google Scholar 

  4. J. Qin, L. Wang, D. P. Yuan, P. Gao, and B. Z. Zhang, Chaos and bifurcations in periodic windows observed in plasmas, Phys. Rev. Lett. 63: 163 (1989)

    Article  ADS  Google Scholar 

  5. Ding Weixing, Huang Wei, Wang Xiadong, and C. X. Yu, Quasiperiodic transition to chaos in a plasma, Phys. Rev. Lett. 70: 170 (1993)

    Article  ADS  Google Scholar 

  6. Jiang Qin and Long Wang, Dimension of undriven plasma chaos, Phys. Letters A156: 81 (1991)

    ADS  Google Scholar 

  7. E. Ott, Strange attractors and chaotic motions of dynamical systems, Rev. Mod. Phys. 53: 655 (1981)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. J. P. Eckmann, Roads to turbulence in dissipative dynamical systems, Rev. Mod. Phys. 53: 643 (1981)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. R. M. May, Simple mathematical models with very complicated dynamics, Nature 261: 459 (1976)

    Article  ADS  Google Scholar 

  10. S. J. Shenker, Scaling behavior in a map of the circle onto itself: empirical results, Physica 5D: 405 (1982)

    MathSciNet  ADS  Google Scholar 

  11. M. H. Jensen, P. Bak, and T. Bohr, Transition to chaos by interaction of resonances in dissipative systems. I. Circle Maps, Phys. Rev. A30: 1960 (1984)

    MathSciNet  ADS  Google Scholar 

  12. C. Wilke, H. Deutsch, and R. W. Leven, Experimental study of nonlinear behaviour of a neon glow discharge, Contrib. Plasma Phys. 30: 659 (1990)

    Article  ADS  Google Scholar 

  13. J. A. Glazier and A. Libchaber, Quasi-periodicity and dynamical systems: an experimentalists view, IEEE Trans. Circuits and Systems 35: 299 (1988)

    MathSciNet  Google Scholar 

  14. R. Timm and A. Piel, Hysteresis and transition to cChaos in a thermionic plasma discharge, Contrib. Plasma Phys. 32: 599 (1992)

    Article  ADS  Google Scholar 

  15. F. Greiner, T. Klinger, H. Klostermann, and A. Piel, Experiments and particle-in-cell simulation on self-oscillations and period doubling in thermionic discharges at low pressure, Phys. Rev. Lett. 70: 3071 (1993)

    Article  ADS  Google Scholar 

  16. F. Greiner, T. Klinger and A. Piel, Hysteresis, selfspiking and Chaos in thermionic diodes with filament cathodes, Proceedings of the Fourth International Symposium on Double Layers, Innsbruck, Austria, 1992, ed. R. W. Schrittwieser, World Scientific, Singapore (1993)

    Google Scholar 

  17. R. Limpaecher and K. MacKenzie, Magnetic multipole containment of large uniform collisionless quiescent plasmas, Rev. Sci. Instrum. 44: 726 (1973)

    Article  ADS  Google Scholar 

  18. K. N. Leung, T. K. Samec, and A. Lamm, optimisation of permanent magnet plasma confinement, Phys. Lett. 51A: 490 (1975)

    ADS  Google Scholar 

  19. K. N. Leung, G. R. Taylor, J. M. Barrick, S. L. Paul, and R. E. Kribel, Plasma confinement by prmanent magnet boundaries, Phys. Lett. 57A: 145 (1976)

    ADS  Google Scholar 

  20. L. Malter, E. O. Johnson, and W. M. Webster, Studies of externally heated hot cathode arcs, Part I. Modes of the discharge, RCA Rev. 12: 415 (1951)

    Google Scholar 

  21. W. M. Webster, E. O. Johnson, and L. Malter, Studies of externally heated hot cathode arcs, Part II. The anode glow mode, RCA Rev. 13: 163 (1952)

    Google Scholar 

  22. C. K. Birdsall, Particle-in cell charged-particle simulations, plus Monte-Carlo collisions with neutral atoms, PIC-MCC, IEEE Transactions Plasma Sci. 19: 65 (1991)

    Article  ADS  Google Scholar 

  23. H. Schamel, Electron holes, ion holes and double Layers, Phys. Rep. 140: 161 (1986)

    Article  ADS  Google Scholar 

  24. S. Kuhn, A review of experimental, simulation, and theoretical work on the potential relaxation instability, Analele Stiintifice ale Universitatii’ Al. I. Cuza’ Din Iasi, Proc. 3rd Symp. Plasma Double Layers, Bucharest (1987)

    Google Scholar 

  25. S. Iizuka, P. Michelsen, J. J. Rasmussen, R. Schrittwieser, R. Hatakeyama, K. Saeki and N. Sato, Dynamics of a potential barrier formed on the tail of a moving double layer in a collisionless plasma, Phys. Rev. Lett. 48: 145 (1982)

    Article  ADS  Google Scholar 

  26. F. Takens, in: “Dynamical Systems and Turbulence”, eds. D. A. Rand and L. S. Young, Lecture Notes in Mathematics Vol. 898, Springer, Berlin (1981)

    Google Scholar 

  27. Th. Buzug and G. Pfister, Comparison of algorithms calculating optimal embedding parameters for delay time coordinates, Physica D 58: 127 (1992)

    Article  ADS  Google Scholar 

  28. P. Grassberger and I. Procaccia, Characterisation of strange attractors, Phys. Rev. Lett. 50: 346 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  29. P. Grassberger and I. Procaccia, Mesauring the strangeness of strange attractors, Physica D9: 189 (1983)

    MathSciNet  ADS  Google Scholar 

  30. H. G. Schuster, “Deterministic Chaos”, Physik Verlag, Weinheim (1984)

    MATH  Google Scholar 

  31. C. Jeffries, J. Perez, Observation of a Pomeau-Manneville intermittent route to chaos in a nonlinear oscillator, Phys. Rev. A 26, 2117 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  32. M. E. Koepke and D. M. Hartley, Experimental verification of periodic pulling in a nonlinear electronic oscillator, Phys. Rev. A44: 6877 (1991)

    ADS  Google Scholar 

  33. U. Parlitz and W. Lauterborn, Period doubling cascades and devil’s staircases of the driven van der Pol oscillator, Phys. Rev. A36: 1428 (1987)

    ADS  Google Scholar 

  34. H. Klostermann, F. Greiner, T. Klinger, and A. Piel, Stable and unstable discharge modes of a multipole confined thermionic discharge at low pressure, submitted to Plasma Sources Sci. Techn. (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Piel, A., Greiner, F., Klinger, T., Klostermann, H., Rohde, A. (1994). Chaos in Plasmas: A Case Study in Thermionic Discharges. In: Kikuchi, H. (eds) Dusty and Dirty Plasmas, Noise, and Chaos in Space and in the Laboratory. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1829-7_43

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1829-7_43

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5740-7

  • Online ISBN: 978-1-4615-1829-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics