Advertisement

Non-Auroral Lights on Jupiter’s Dark Side

  • James W. Warwick

Abstract

Lights in the clouds of Jupiter seen on Voyager 1 and Voyager 2 long-exposure dark-side images are widely believed to be produced by atmospheric lightning (Smith, et al, 1979; Cook, et al, 1983; Borucki, et al, 1982) with as much as 40 times more light than superbolts on Earth. Magalhaes and Borucki (1991) have provided a very nice extension and up-date of these data. They particularly stress the “striking”… “stability of the latitudes of lightning activity at 49 degrees over the time between the Voyager spacecraft encounters and over a wide range of longitudes…”

Keywords

Radio Source Flux Tube Zonal Velocity Lightning Activity Outer Planet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acuna, M. H., Neubauer, F. M., and Ness, N. F., 1981, Standing Alfvén wave current system at Io: Voyager 1 observations, J. G. R. 86: 8513.CrossRefGoogle Scholar
  2. Bigg, E. K., 1964, Influence of the satellite Io on Jupiter’s decametric emission, Nature 203: 1088.CrossRefGoogle Scholar
  3. Borucki, W. J., Bar-Nun, A., Scarf, F. L., Cook, A. F., and Hunt, G. E., 1982, Lightning activity on Jupiter, Icarus 52: 492.ADSCrossRefGoogle Scholar
  4. Carr, T. D., Desch, M. D., Alexander, J. K., 1983, in: Phenomenology of magnetospheric radio emissions, “Physics of the Jovian Magnetosphere”, A. J. Dessler, ed., Cambridge University Press, Cambridge.Google Scholar
  5. Connerney, J. E. P., 1981, Magnetic field of Jupiter: a generalized inverse approach, J. G. R. 86: 7679.CrossRefGoogle Scholar
  6. Cook, A. F. II, Duxbury, T. C., and Hunt, G. E., 1979, First results on Jovian lightning, Nature 280: 794.ADSCrossRefGoogle Scholar
  7. Dulk, G., 1970, Characteristics of Jupiter’s decametric radio source measured with arc-second resolution, ApJ. 159: 671.ADSCrossRefGoogle Scholar
  8. Goldreich, P. and Lynden-Bell, D., 1969, Io, a Jovian unipolar inductor, ApJ. 156: 59.ADSCrossRefGoogle Scholar
  9. Gurnett, D. A., Kurth, W. S., Cairns, I. H., and Granroth, L. J., 1990, Whistlers in Neptune’s magneto-sphere: evidence of atmospheric lightning, J. G. R. 95: 20967.CrossRefGoogle Scholar
  10. Ingersoll, A. P., et al., 1981, Interaction of eddies and mean zonal flow on Jupiter as inferred from Voyager 1 and 2 images, J. G. R. 86: 8733.CrossRefGoogle Scholar
  11. Kurth, W. S., Strayer, B. D., Gurnett, D. A., and Scarf, F. L., 1985, A summary of whistlers observed by Voyager 1 at Jupiter, Icarus 61: 497.ADSCrossRefGoogle Scholar
  12. Magalhaes, J. A, and Borucki, W. J., 1991, Spatial distribution of visible lightning on Jupiter, Nature 349: 311.ADSCrossRefGoogle Scholar
  13. Piddington, J. H. and Drake, J. F., 1968, Electrodynamic effects of Jupiter’s satellite Io, Nature 217: 935.ADSCrossRefGoogle Scholar
  14. Smith, B. A., et al., 1979, The Jupiter system through the eyes of Voyager 1, Science 204: 951.ADSCrossRefGoogle Scholar
  15. Warwick, J. W., 1981, Models for Jupiter’s decametric arcs, J. G. R. 86: 8585.CrossRefGoogle Scholar
  16. Warwick, J. W., 1989, The power spectrum of electrical discharges seen on Earth and at Saturn, J. G. R. 94: 8757.CrossRefGoogle Scholar
  17. Warwick, J. W., et al., 1981, Planetary radio astronomy observations from Voyager 1 near Saturn, Science 212: 239.ADSCrossRefGoogle Scholar
  18. Zarka, P., 1985, On the detection of radio bursts associated with Jovian and Saturnian lightnings, AAp. 146: L15.ADSGoogle Scholar
  19. Zarka, P. and Pedersen, B. M., 1986, Radio detection of Uranian lightning by Voyager 2, Nature 323: 605.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • James W. Warwick
    • 1
  1. 1.Radiophysics, IncorporatedBoulderUSA

Personalised recommendations