Advertisement

Cosmic Dusty Plasmas: Some Recent Results

  • D. A. Mendis
  • M. Rosenberg
  • V. W. Chow

Abstract

Dust is an ubiquitous component of the cosmic plasma environment. It exists in the interstellar, circumstellar, interplanetary, circumplanetary and cometary environments. In each case it is immersed in a magnetized plasma and ultraviolet radiation environment. This leads the dust to be electrically charged and consequently coupled to the plasma by means of electrical and magnetic forces. Since this coupling becomes stronger as the grain size decreases, other things being equal, the recent in-situ detection of very small grains (VSGs with dimensions ≤ 100 Å) in the environment of Halley’s comet and the inference of their existence in the interstellar medium2 provide further impetus to the study of dustplasma interactions in space.

Keywords

Dusty Plasma Secondary Emission Charged Dust Secondary Electron Emission Ambient Plasma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. L. Puget and A. Leger, Ann. Rev. Astron. Astrophys. 27: 161 (1989).ADSCrossRefGoogle Scholar
  2. 2.
    R. Z. Sagdeev, E. N. Evlanov, M. N. Fomenkova, O. F. Prilutskii and B. V. Zubov, Adv. Space Res. 9: 263 (1989).ADSCrossRefGoogle Scholar
  3. 3.
    R. Bingham, U. de Angelis, V. N. Tsytovich and O. Havnes, Phys. Fluids B3: 811 (1991).ADSGoogle Scholar
  4. 4.
    C. K. Goertz, Rev. Geophys. 27: 271 (1989).ADSCrossRefGoogle Scholar
  5. 5.
    T. W. Hartquist, O. Havnes, and G. E. Morfill, Fund. Cosmic Phys. 15: 107 (1992).ADSGoogle Scholar
  6. 6.
    T. G. Northrop, Physica Scripta 45: 475 (1993).ADSCrossRefGoogle Scholar
  7. 7.
    E. C. Whipple, Jr., Rep. Prog. Phys. 44: 1197 (1981).ADSCrossRefGoogle Scholar
  8. 8.
    T. G. Northrop, D. A. Mendis, and L. Shaffer, Icarus 79: 101 (1989).ADSCrossRefGoogle Scholar
  9. 9.
    G. E. Morfill, Adv. Space Res. 3: 87 (1983).ADSCrossRefGoogle Scholar
  10. 10.
    C. K. Goertz, and W.-H. Ip, Geophys. Res. Letts. 11: 349 (1984).ADSCrossRefGoogle Scholar
  11. 11.
    E. C. Whipple, T. G. Northrop, and D. A. Mendis, J. Geophys. Res. 90: 7405 (1985).ADSCrossRefGoogle Scholar
  12. 12.
    W. Xu, N. D’Angelo, and R. L. Merlino, J. Geophys. Res. 98 (A5): 7843 (1993).ADSCrossRefGoogle Scholar
  13. 13.
    D. Summers and R. M. Thome, Phys. Fluids 83: 1835 (1991).Google Scholar
  14. 14.
    T. P. Armstrong, M. T. Paonessa, E. V. Bell and S. M. Krimigis, J. Geophys. Res. 88: 8893 (1983).ADSCrossRefGoogle Scholar
  15. 15.
    J. T. Gosling, et al., J. Geophys. Res. 86: 547 (1981).ADSCrossRefGoogle Scholar
  16. 16.
    M. Rosenberg and D. A. Mendis, J. Geophys. Res. 97 (E9): 14 (1992).CrossRefGoogle Scholar
  17. 17.
    D. A. Mendis, J. R. Hill, W.-H. Ip, C. K. Goertz, and E. Grun, in Saturn (Ed. T. Gehreis and M. S. Matthews) Univ. of Ariz press Tucson, 546 (1984).Google Scholar
  18. 18.
    E. C. Whipple, Jr., The equilibrium potential of a body in the upper atmosphere and interplanetary space NASA-GSFC Rep. X-615-65-296 (1965).Google Scholar
  19. 19.
    N. Meyer-Vernet, Astron. Astrophys. 105: 98 (1982).ADSMATHGoogle Scholar
  20. 20.
    M. Horanyi and C. K. Goertz, Astrophys. J. 361: 105 (1990).ADSCrossRefGoogle Scholar
  21. 21.
    V. W. Chow, D. A. Mendis, and M. Rosenberg, The role of grain size and particle velocity distribution in secondary electron emission in space plasmas J. Geophys. Res. (submitted) (1993).Google Scholar
  22. 22.
    E. J. Sternglass, Sci. Pap. 1772, Westinghouse Res. Lab., Pittsburg, PA (1993).Google Scholar
  23. 23.
    E. J. Opik, Irish. Astron. J. 4: 84 (1956).ADSGoogle Scholar
  24. 24.
    D. A. Mendis, Astrophys. Space Sci. 176: 163 (1991).ADSCrossRefGoogle Scholar
  25. 25.
    D. A. Mendis and W. I. Axford, Ann. Rev. Astron. Astrophys 26: 11 (1974)ADSCrossRefGoogle Scholar
  26. 26.
    H. Fechtig, E. Grun, and G. E. Morfill, Planet. Space Sci. 27: 511 (1979).ADSCrossRefGoogle Scholar
  27. 27.
    D. A. Mendis, Laboratory and Space Plasmas (ed. H. Kikuchi), Springer-Verlag, Heidelberg, p. 51 (1989).Google Scholar
  28. 28.
    D. A. Mendis and M. Horanyi, Cometary Plasma Processes, Geophysical Monograph, 61, Am. Geophys. Union), Ed. A. D. Johnstone, p.17 (1991)Google Scholar
  29. 29.
    M. N. Fomenkova and D. A. Mendis, Astrophys. Space Sci. 189: 327 (1992).ADSCrossRefGoogle Scholar
  30. 30.
    M. Horanyi, G. Morfill, and E. Grun, Nature 363: 144 (1993).ADSCrossRefGoogle Scholar
  31. 31.
    U. deAngelis, V. Formisano, and M. Giordano, J. Plasma Phys. 40: 399 (1988)ADSCrossRefGoogle Scholar
  32. 32.
    V. E. Fortov and I. T. Iakubov, Physics of Nonideal Plasma, Chapter. 8, Hemisphere, New York, 1990.Google Scholar
  33. 33.
    N. D’Angelo, Planet. Space Sci. 38: 1143 (1990).ADSCrossRefGoogle Scholar
  34. 34.
    U. de Angelis, Phys. Scripta 45: 465 (1992).ADSCrossRefGoogle Scholar
  35. 35.
    P. K. Shukla and V. P. Silin, Phys. Scripta 45: 508 (1992).ADSCrossRefGoogle Scholar
  36. 36.
    N. N. Rao, P. K. Shukla, and M. Y. Yu, Planet. Space Sci. 38: 543 (1990).ADSCrossRefGoogle Scholar
  37. 37.
    P. K. Shukla, M. Y. Yu, and R. Bharuthram, J. Geophys. Res. 96: 21, 343 (1991).CrossRefGoogle Scholar
  38. 38.
    U. De Angelis, and R. Bingham, V. N. Tsytovich, J. Plasma Phys. 42: 445 (1989).ADSCrossRefGoogle Scholar
  39. 39.
    V. N. Tsytovich, G. E. Morfill, R. Bingham, and U. de Angelis, Comments Plasma Phys. Controlled Fusion, 13: 153 (1990).Google Scholar
  40. 40.
    O. Havnes, Astron. Astrophys. 193: 309 (1988).ADSGoogle Scholar
  41. 41.
    N. D’Angelo and B. Song, Planet Space Sci. 38: 1577 (1990).ADSCrossRefGoogle Scholar
  42. 42.
    R. Bharuthram, H. Saleem, and P. K. Shukla, Phys. Scripta 45: 512 (1992).ADSCrossRefGoogle Scholar
  43. 43.
    M. Rosenberg, Planet. Space Sci. 41: 229 (1993).ADSCrossRefGoogle Scholar
  44. 44.
    R. C. Davidson and N. A. Krall, Nuclear Fusion 17: 1313 (1977).ADSCrossRefGoogle Scholar
  45. 45.
    K. Papadopoulos, Rev. Geophys. Space Sci. 15: 113 (1977)ADSCrossRefGoogle Scholar
  46. 46.
    T. Umebayashi and T. Nakano, Mon. Nat. R. Astro. Soc. 243: 103 (1990).ADSGoogle Scholar
  47. 47.
    R. Nishi, T. Nakano, and T. Umebayashi, Astrophys. J. 368: 181 (1991).ADSCrossRefGoogle Scholar
  48. 48.
    Norman, C. and J. Heyvaerts, Astron. Astrophys. 147: 247 (1985).ADSGoogle Scholar
  49. 49.
    Mendis, D. A., H. L. F. Houpis and J. R. Hill, J. Geophys. Res. 87: 3449 (1982).ADSCrossRefGoogle Scholar
  50. 50.
    D. B. Melrose, Instabilities in Space and Laboratory Plasmas, Cambridge University Press, 1989.Google Scholar
  51. 51.
    C. K. Goertz and L. Shan, Geophys. Res. Lett. 15: 84 (1988).ADSCrossRefGoogle Scholar
  52. 52.
    F. Melandso, T. Aslaksen, and O. Havnes, “A kinetic model for dust-acoustic waves applied to planetary rings”, J. Geophys. Res. in press, 1993.Google Scholar
  53. 53.
    F. Melandso, T. K. Aslaksen, and O. Havnes, “A new damping effect for the dust-acoustic wave”, Planet. Space Sci. in press, 1993.Google Scholar
  54. 54.
    O. Havnes, T. K. Aanesen, and F. Melandso, J. Geophys. Res. 95: 6581 (1990).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • D. A. Mendis
    • 1
  • M. Rosenberg
    • 1
  • V. W. Chow
    • 1
  1. 1.Department of Electrical and Computer EngineeringUniversity of CaliforniaSan Diego La JollaUSA

Personalised recommendations