Advertisement

Theoretical Quantum-Mechanical Study on the Soot Formation Process

  • Jerzy Leszczyński

Abstract

Recent developments in computational chemistry and advances in computer technology allow for a successful application of quantum-mechanical methods to broad areas of chemistry where experimental methods are difficult to apply. For species that are awkward to handle experimentally, computational modeling is an attractive source of information. Currently, ab initio methods based on quantum-mechanical postulates prove to provide accurate data on structures and properties of small-and medium-size molecules. These data could supplement experimental results or serve as a valuable source of information when experimental data are scarce. Computerized modeling is especially attractive for systems that are dangerous to study experimentally and for short-lived reactive species as well as transient ions. A detailed knowledge of structures and properties of these agents would help in the understanding of their chemistry and might be of importance in technology.

Keywords

Soot Particle Soot Formation Harmonic Vibrational Frequency Combustion Institute Nonempirical Calculation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, W. P., Edwards, W. D., and Zerner, M. C., 1986, Calculated spectra of hydrated ions of the first transition-metal series, Inorg. Chem. 15:2728.CrossRefGoogle Scholar
  2. Bacon, A. D., and Zerner, M. C., 1979, An intermediate neglect of differential overlap theory for transition metal complexes: Iron, cobalt, and copper chlorides, Theor. Chim. Acta 53:21.CrossRefGoogle Scholar
  3. Brown, R. C., and Eraslan, A. N., 1988, Simulation of ionic structure in lean and close-to stoichiometric acetylene flames, Combust. Flame 73:1.CrossRefGoogle Scholar
  4. Calcote, H. E., 1981, Mechanisms of soot nucleation in flames: A critical review, Combust. Flame 42:215.CrossRefGoogle Scholar
  5. Calcote, H. F., and Keil, D. G., 1988, Ionic mechanisms of soot formation in flames; Ion molecule reactions in sooting acetylene-oxygen flames, Combust. Flame 74:131.CrossRefGoogle Scholar
  6. Calcote, H. E., Olson, D. B., and Keil, D. G., 1988, Are ions important in soot formation?, Energy Fuels 2:494.CrossRefGoogle Scholar
  7. Cameron, A., Leszczynski, J., Zerner, M. C., and Weiner, B., 1989, Structure and properties of C3H3 +cations, J. Phys. Chem. 93:139.CrossRefGoogle Scholar
  8. Cone, C., Dewar, M. J. S., and Landman, D., 1977, Gaseous ions: MINDO/3 study of the rearrangement of benzyl cation to tropylium, J. Am. Chem. Soc. 99:372.CrossRefGoogle Scholar
  9. Cox, S. R., and Williams, D. E., 1981, Representation of the molecular electrostatic potential by a net atomic charge model, J. Comput. Chem. 2:304.CrossRefGoogle Scholar
  10. Dewar, M. J. S., and Haddon, R. C., 1973, MINDO/3 study of cyclopentadienyl (1+) and cyclopentadienyl (1-) ions, J. Am. Chem. Soc. 95:5836.CrossRefGoogle Scholar
  11. Dewar, M. J. S., and Landman, D., 1977, Gaseous ions: MINDO/3 study of the rearrangement of toluene and cycloheptatriene molecular ions and the formation of tropylium, J. Am. Chem. Soc. 99:2446.CrossRefGoogle Scholar
  12. Dewar, M. J. S., and Thiel, W, 1977, Ground states of molecules. 39. MNDO results for molecules containing hydrogen, carbon, nitrogen, and oxygen, J. Am. Chem. Soc. 99:4907.CrossRefGoogle Scholar
  13. Dewar, M. J. S., Zoebisch, E. G., Healy, E. F., and Stewart, J. J. P, 1985, Development and use of quantum mechanical molecular models, J. Am. Chem. Soc. 107:3902.CrossRefGoogle Scholar
  14. Eyler, J. R., Oddershede, J., Sabin, J. R., Diercksen, G. H. E, and Gruner, N., 1984, Excitation energy of linear propargylium (C3H3 +): Can this ion be detected by laser-induced fluorescence in flames?, J. Phys. Chem. 88:3121.CrossRefGoogle Scholar
  15. Feng, J., Leszczynski, J., Weiner, B., and Zerner, M. C., 1989, The reaction C3H3 + + C2H2 and the structural isomers of C5H5, J. Am. Chem. Soc. 111:4648.CrossRefGoogle Scholar
  16. Frenklach, M., Clary, D. C., Gardiner, W. C., Jr., and Stein, S. E., 1985, Representation of multistage mechanisms in detailed computer modeling of polymerization kinetics, in Twentieth Symposium (International) on Combustion, p. 887, The Combustion Institute, Pittsburgh.Google Scholar
  17. Gaydon, A. G., and Wolfhard, H. G., 1979, Flames: Their Structure,Radiation, and Temperature, 4th ed., John Wiley & Sons, New York.Google Scholar
  18. Gerhardt, P., and Homann, K. H., 1990, Ions and charged soot particles in hydrocarbon flames: Positive aliphatic and aromatic ions in ethyne/oxygen flames, J. Phys. Chem. 94:5381.CrossRefGoogle Scholar
  19. Gioumousis, G., and Stevenson, D. P., 1958, Reactions of gaseous molecular ions with gaseous molecules: Theory, J. Chem. Phys. 29:294.CrossRefGoogle Scholar
  20. Glassman, I., 1989, Soot formation in combustion processes, in Twenty-Second Symposium (International) on Combustion, p. 295, The Combustion Institute, Pittsburgh.Google Scholar
  21. Harris, S. J., and Weiner, A. M., 1985, Detection of incipient soot particles in a premixed ethylene flame, Annu. Rev. Phys. Chem. 36:31.CrossRefGoogle Scholar
  22. Harris, S. J., Weiner, A. M., and Blint, R. J., 1988, Formation of small aromatic molecules in a sooting ethylene flame, Combust. Flame 72:91.CrossRefGoogle Scholar
  23. Harrison, A. H., Haynes, P., McLean, S., and Meyer, F., 1965, The mass spectra of methyl substituted cyclopentadienes, J. Am. Chem. Soc. 87:5099.CrossRefGoogle Scholar
  24. Hayhurst, A. N., and Jones, H. R. N., 1987, Ions and soot in flames, J. Chem. Soc., Faraday Trans. 83:1. Google Scholar
  25. Hayhurst, A. N., and Kittelson, D. B., 1978, The positive and negative ions in oxy-acetylene flames, Combust. Flame 31:37.CrossRefGoogle Scholar
  26. Hehre, W. J., and Schleyer, P v. R., 1973, Cyclopentadienyl and related (CH)5 + cations, J. Am. Chem. Soc. 95:5837.CrossRefGoogle Scholar
  27. Hehre, W. J., Radom, L., Schleyer, P. v R., and Pople, J. A., 1986, Ab Initio Molecular Orbital Theory, John Wiley & Sons, New York.Google Scholar
  28. Herbst, E., Adams, N. G., and Smith, D., 1984, Ion-molecule synthesis of C3O, Astrophys. J. 285:618.CrossRefGoogle Scholar
  29. Hirst, D. M., 1990, A Computational Approach to Chemistry (J. P. Simons, ed.), Blackwell Scientific Publications, Cambridge.Google Scholar
  30. Holmes, J. L., and Lossing, F. P., 1979, The reactivity of [C3H3 +1 ions: A thermochemical study, Can. J. Chem. 57:249.CrossRefGoogle Scholar
  31. Homann, K. H., 1985, Formation of large molecules, particulates, and ions in premixed hydrocarbon flames: Progress and unresolved questions, in Twentieth Symposium (International) on Combustion, p. 857, The Combustion Institute, Pittsburgh.Google Scholar
  32. Homann, K. H., and Wagner, H. G., 1967, Mechanisms of C formation in premixed flames, in Eleventh Symposium (International) on Combustion, p. 371, The Combustion Institute, Pittsburgh.Google Scholar
  33. Keil, D. G., Gill, R. J., Olson, D. B., and Calcote, H. F, 1985, Ionization and soot formation in premixed flames, in Twentieth Symposium (International) on Combustion, p. 1129, The Combustion Institute, Pittsburgh.Google Scholar
  34. Kohler, H. J., and Lischka, H., 1979, Theoretical investigations on carbocations: Structure and stability of C3H5 +, C4H9 + (2-butyl cation), C5H+ 5, C6H7 + (protonated benzene), and C7H11 + (2-norbornyl cation), J. Am. Chem. Soc. 101:7863.Google Scholar
  35. Kollmar, H., Smith, H. O., and Schleyer, P v. R., 1973, CNDO calculations of isomeric (CH)5 + cations, J. Am. Chem. Soc. 95:5834.CrossRefGoogle Scholar
  36. Kwiatkowski, J. S., and Leszczynski, J., 1992, Ab initio post-Hartree-Fock studies on molecular structure and vibrational IR spectrum of formaldehyde, Int. J. Quantum Chem.,Quantum Chem. Symp. 26:421.CrossRefGoogle Scholar
  37. Kwiatkowski, J. S., and Leszczynski, J., 1993, Harmonized infrared spectrum of formaldehyde: Experiment and theory, J. Mol. Spectrosc. 157:540.CrossRefGoogle Scholar
  38. Lepp, S., Dalgarno, A., Van Dishoeck, E. F., and Black, J. H., 1988, Large molecules in diffuse interstellar clouds, Astrophys. J. 324:553.CrossRefGoogle Scholar
  39. Leszczyński, J., and Goodman, L., 1994, Coupled cluster prediction of the formaldehyde harmonic force field, J. Computational Chem., submitted.Google Scholar
  40. Leszczyński, J., Wiseman, E, and Zerner, M. C., 1988, Toward an ionic mechanism of soot particle formation: Reactions between acetylene and tautomeric forms of the C3H3 + ions, Int. J. Quantum Chem.,Quantum Chem. Symp. 22:117.CrossRefGoogle Scholar
  41. Lias, S. G., Liebman, J. F., and Levin, R. D., 1984, Evaluated gas phase basicities and proton affinities of molecules: Heats of formation of protonated molecules, J. Phys. Chem. Ref. Data 13:695.CrossRefGoogle Scholar
  42. Lipkowitz, K. B., and Boyd, D. B. (eds.), 1990. Reviews in Computational Chemistry, Vol. I, VCH, New York.Google Scholar
  43. Lipkowitz, K. B., and Boyd, D. B. (eds.), 1991. Reviews in Computational Chemistry, Vol. II, VCH, New York.Google Scholar
  44. Lipkowitz, K. B., and Boyd, D. B. (eds.), 1992. Reviews in Computational Chemistry, Vol. III, VCH, New York.Google Scholar
  45. Lipkowitz, K. B., and Boyd, D. B. (eds.), 1993. Reviews in Computational Chemistry, Vol. IV, VCH, New York.Google Scholar
  46. Lipkowitz, K. B., and Boyd, D. B. (eds.), 1994. Reviews in Computational Chemistry, Vol. V, VCH, New York.Google Scholar
  47. Lossing, F. P., 1972, Free radicals by mass spectrometry: Ionization potentials and heats of formation of C3H3, C3H5, and C4H7 radicals and ions, Can. J. Chem. 50:3973.CrossRefGoogle Scholar
  48. Maclagan, R. G. A. R., 1992, The proton affinity of C3H2, J. Mol. Struct. (Theochem) 258:175.CrossRefGoogle Scholar
  49. Masamune, S., Sakai, M., and Ona, H., 1972a, Nature of the (CH)5 + species: Solvolysis of 1,5dimethyltricyclo[2. 1.0.0.]pen-3-y1 benzoate, J. Am. Chem. Soc. 94:8955.CrossRefGoogle Scholar
  50. Masamune, S., Sakai, M., Ona, H., and Jones, A., 1972b, Nature of the (CH)3 species: Direct observation of the carbonium ion of 3 hydroxyhomotetrehedrane derivatives, J. Am. Chem. Soc. 94:8956.CrossRefGoogle Scholar
  51. McCreary, D. A., and Freiser, B. S., 1978, Gas phase photodissociation of C7H7 +, J. Am. Chem. Soc. 100:2902.CrossRefGoogle Scholar
  52. Miller, J. A., and Melius, C. F., 1992, Kinetic and thermodynamic issues in the formation of aromatic compounds in flames of aliphatic fuels, Combust. Flame 91:21.CrossRefGoogle Scholar
  53. Miller, W. J., 1973, Electron attachment kinetics in flames: Dissociative attachment to boric acid (HBO2), in Fourteenth Symposium on Combustion, The Combustion Institute, Pittsburgh.Google Scholar
  54. Olson, D. B., and Calcote, H. F., 1981, A comparison of polycyclic aromatic hydrocarbon in soot produced from various sources, in Eighteenth Symposium (International) on Combustion, p. 453, The Combustion Institute, Pittsburgh.Google Scholar
  55. Ozturk, F., Baykut, G., Moini, M., and Eyler, J. R., 1987, Reactions of the propynylium isomer manifold with acetylene and diacetylene in the gas phase, J. Phys. Chem. 91:4360.CrossRefGoogle Scholar
  56. Pople, J. A., Beveridge, D. L., and Dobosh, P., 1967, Approximation self-consistent MO theory: Intermediate neglect of differential overlap, J. Chem. Phys. 47:2026.CrossRefGoogle Scholar
  57. Radom, L., Hariharan, P. C., Pople, J. A., and Schleyer, P. v. R., 1976, Molecular orbital theory of the electronic structure of organic compounds: Structures and stabilities of C3H3 + and C3H+ cations, J. Am. Chem. Soc. 98:10.CrossRefGoogle Scholar
  58. Raghavachari, K., Whiteside, R. A., Pople, J. A., and Schleyer, P v. R., 1981, Molecular orbital theory of the electronic structure of organic molecules: Structures and energies of C1–C3 carbocations including effects of electron correlation, J. Am. Chem. Soc. 103:5649.CrossRefGoogle Scholar
  59. Ridley, J. E., and Zerner, M. C., An intermediate neglect of differential overlap technique for spectroscopy: pyrole and the azines, Theor. Chim. Acta 32:111.Google Scholar
  60. Saunders, M., Berger, R., Jaffe, A., McBride, J. M., O’Neill, J., Breslow, R., Hoffman, J. M., Jr., Perchonok, C., Wasserman, E., Hutton, R. S., and Kuck, V. J., 1973, Unsubstituted cyclopentadienyl cation: A ground state triplet, J. Am. Chem. Soc. 95:3017.CrossRefGoogle Scholar
  61. Schiff, H. I., and Bohme, D. K., 1979, An ion–molecule scheme for the synthesis of hydrocarbon chain and organonitrogen molecules in dense interstellar clouds, Astrophys. J. 232:740.CrossRefGoogle Scholar
  62. Smith, D., and Adams, N. G., 1978, Molecular synthesis in interstellar clouds: Radioactive association reactions of methyl (+) ions, Astrophys. J. 220:L87.CrossRefGoogle Scholar
  63. Stein, S. E., 1983, Structure and equilibria of polyaromatic flame ions, Combust. Flame 51:357.CrossRefGoogle Scholar
  64. Stewart, J. J. P, 1990, Semiempirical molecular orbital methods, in Reviews in Computational Chemistry, Vol. I (K. B. Lipkowitz, and D. B. Boyd, eds.), pp. 45–78,VCH, New York. StohrerCrossRefGoogle Scholar
  65. W. D., and Hoffman, R., 1972, Electronic structure and reactivity of strained tricyclic hydrocarbons, J. Am. Chem. Soc. 94:1661.Google Scholar
  66. Takada, T., and Ohno, K., 1979, Calculations on the electronic structure of the cyclopropenyl cation, Bull. Chem. Soc. Jpn. 52:334.CrossRefGoogle Scholar
  67. Tanner, S. D., Goodings, J. M., and Bohme, D. K., 1981, Hydrocarbon ions in fuel-rich, CH4 -C2H2-O2 flames as a probe for the initiation of soot: An experimental approach, Can. J. Chem. 59:1760.CrossRefGoogle Scholar
  68. Tse, R. S., Michand, P, and Delfau, J. L., 1978, Initial pyrolysis ions in hydrocarbon flames, Nature (London) 272:153.CrossRefGoogle Scholar
  69. ’Eimer, B. E., 1989, Detection of interstellar C4D: Implication for ion–molecule chemistry, Astrophys. J. 347:L39.CrossRefGoogle Scholar
  70. Wang, H., Weiner, B., and Frenldach, M., 1993, Theoretical study of reaction between phenylvinyleum ion and acetylene, J. Phys. Chem. 97:10364.CrossRefGoogle Scholar
  71. Westmoreland, P R., Dean, A. M., Howard, J. B., and Longwell, J. P., 1989, Forming benzene in flames by chemically activated isomerization, J. Phys. Chem. 93:8171.CrossRefGoogle Scholar
  72. Wong, M. W., and Radom, L., 1989, Multiply charged isoelectronic analogues of C3H3 +: Cyclic or open chain?, J. Am. Chem. Soc. 111:6976.CrossRefGoogle Scholar
  73. Zerner, M. C., 1991, Semiempirical molecular orbital methods, in Review in Computational Chemistry, Vol. II (K. B. Lipkowitz and D. B. Boyd, eds.), pp. 313–359, VCH, New York.CrossRefGoogle Scholar
  74. Zerner, M. C., Loew, G. H., Kirchner, R. F.., and Mueller-Westerhoff, U. T., 1980, An intermediate neglect of differential overlap technique for spectroscopy of transition-metal complexes: Ferrocene, J. Am. Chem. Soc. 102:589.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Jerzy Leszczyński
    • 1
  1. 1.Department of ChemistryJackson State UniversityJacksonUSA

Personalised recommendations