Skip to main content

Chemistry of a Burning Propellant Surface

  • Chapter
Combustion Efficiency and Air Quality

Abstract

Combustion of energetic solids is the basis of rocket propulsion for space exploration and military technologies. Accurate models of combustion that contain chemical and fluid-mechanical details are greatly needed because atmospheric contamination and cost considerations limit ground-based testing. International disarmament treaties mandate disposal of stockpiled energetic materials. However, conventional disposal methods, such as open-pit burning and detonation, are increasingly restricted by environmental regulations. Description of the gaseous emission products frequently must be given before combustion is authorized. Manipulation of the combustion process may be necessary. Hence, combustion processes must be understood and predicted with ever greater accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bann, B., and Miller, S. A., 1958, Melamine and derivatives of melamine, Chem. Rev. 58:131–172.

    Article  CAS  Google Scholar 

  • Bedford, G., and Thomas, J. H., 1972, Reaction between ammonia and nitrogen dioxide, J. Chem. Soc., Faraday Trans.l, 1972:2163–2170.

    Article  Google Scholar 

  • Behrens, R., 1987, Simultaneous thermogravimetric modulated beam mass spectroscopy and time-offlight velocity spectra measurements: Thermal decomposition mechanisms of RDX and HMX, in Chemical Propulsion Information Agency Publication, Vol. 476, Part I, pp. 333–342.

    Google Scholar 

  • Behrens, R., 1990, Thermal decomposition of energetic materials: Temporal behaviors of the rates of formation of the gaseous pyrolysis products of the condensed-phase decomposition of HMX, J. Phys. Chem. 94:6706–6718.

    Article  CAS  Google Scholar 

  • Brill, T. B., 1992, Connecting the chemical composition of a material to its combustion characteristics, Prog. Energ. Combust. Sci. 18:91–116.

    Article  CAS  Google Scholar 

  • Brill, T. B., and Brush, P. J., 1992, Condensed phase chemistry of explosives and propellants at high temperature: HMX, RDX and BAMO, Philos. Trans. R. Soc. London Ser.A 339:377–385.

    Article  CAS  Google Scholar 

  • Brill, T. B., and Oyumi, Y., 1986a, Thermal decomposition of energetic materials 10. A relationships of molecular structure and vibrations to decomposition: Polynitro-3,3,7,7-tetrakis(trifluoro-methyl)-2,4,6,8-tetraazabicyclo[3.3.0]octanes, J. Phys. Chem. 90:2679–2682.

    Article  CAS  Google Scholar 

  • Brill, T. B., and Oyumi, Y., 1986b, Thermal decomposition of energetic materials 17. A relationship of molecular composition to HONO formation: Bicyclo and spiro tetranitramines, J. Phys. Chem. 90:6848–6853.

    Article  CAS  Google Scholar 

  • Brill, T. B., Karpowicz, R. J., Haller, T. M., and Rheingold, A. L., 1984, A structural and Fourier transform infrared spectroscopy characterization of the thermal decomposition of 1-(azidomethyl)-3,5,7-tetrazacyclooctane, J. Phys. Chem. 88:4138–4143.

    Article  CAS  Google Scholar 

  • Brill, T. G., Brush, P J., James, K. J., Shepherd, J. E., and Pfeiffer, K. J., 1992a, T-Jump/FTIR spectroscopy: A new entry into the rapid, isothermal pyrolysis chemistry of solids and liquids, Appl. Spectrosc. 46:900–911.

    Article  CAS  Google Scholar 

  • Brill, T. B., Brush, P. J., Patil, D. G., and Chen, J. K., 1992b, Chemical pathways at a burning surface, in Twenty-Fourth Symposium (International) on Combustion, pp. 1907–1914, The Combustion Institute, Pittsburgh.

    Google Scholar 

  • Brill, T. B., Brush, P. J., and Patil, D. G., 1993a, Thermal decomposition of energetic materials 58. Chemistry of ammonium nitrate and ammonium dinitramide near the burning surface temperature, Combust. Flame 92:178–186.

    Article  CAS  Google Scholar 

  • Brill, T. B., Patil, D. G., Lengellé, G., and Duterque, J. R., 1993b, Thermal decomposition of energetic materials 63. Surface reaction zone chemistry of simulated 1,3,5,5-tetranitrohexahydropyrimidine (DNNC or TNDA) compared to RDX, Combust. Flame 95:183–190.

    Article  CAS  Google Scholar 

  • Bulusu, S., Weinstein, D. I., Autera, J. R., and Velicky, R. W, 1986, Deuterium kinetic isotope effect in the thermal decomposition of 1,3,5-trinitro-1,3,5-triazacyclohexane and 1,3,5,7-tetranitro1,3,5,7-tetrazacyclooctane: Its use as an experimental probe for their shock-induced chemistry, J. Phys. Chem. 90:4121–4126.

    Article  CAS  Google Scholar 

  • Cosgrove, J. D., and Owen, A. J., 1974, The thermal decomposition of 1,3,5-trinitro hexahydro-1,3,5triazine (RDX)—part II: Effects of the products, Combust. Flame 22:19–22.

    Article  CAS  Google Scholar 

  • Cronin, J. T., and Brill, T. B., 1987, Thermal decomposition of energetic materials 26. Simultaneous temperature measurements of the condensed phase and rapid-scan FTIR spectroscopy of the gas phase at high heating rates, Appl. Spectrosc. 41:1147–1151.

    Article  CAS  Google Scholar 

  • Cronin, J. T., and Brill, T. B., 1988, Thermal decomposition of energetic materials 29. The fast thermal decomposition characteristics of a multicomponent material: Liquid gun propellant 1845, Combust. Flame 74:81–89.

    Article  CAS  Google Scholar 

  • Federoff, B. T. (ed.), 1960, Encyclopedia of Explosives and Related Items, Vol. 1, Picatinny Arsenal, Dover, New Jersey, p. A3111.

    Google Scholar 

  • Fetherolf, B. L., and Litzinger, T A., 1992, Penn State University, personal communication.

    Google Scholar 

  • Gao, A., Oyumi, Y., and Brill, T. B., 1991, Thermal decomposition of energetic materials 49. Thermolysis routes of mono-and diaminotetrazoles, Combust. Flame 83:345–352.

    Article  CAS  Google Scholar 

  • Kaiser, R., 1935, The explosiveness of ammonium nitrate, Angew. Chem. 48:149–150.

    Article  CAS  Google Scholar 

  • Karpowicz, R. J., and Brill, T. B., 1984, In situ characterization of the melt phase of RDX and HMX by rapid-scan FTIR spectroscopy, Combust. Flame 56:317–325.

    Article  CAS  Google Scholar 

  • Kimura, J., and Kubota, N., 1980, Thermal decomposition of HMX, Prop. Explos. 5:1–8.

    Article  CAS  Google Scholar 

  • Lee, P. R., and Back, M. H., 1988, Kinetic studies of the thermal decomposition of nitroguanidine using accelerating rate calorimetry, Thermochim. Acta 127:89–100.

    Article  CAS  Google Scholar 

  • Melius, C. F., and Binkley, J. S., 1986, Thermochemistry of decomposition of nitramines in the gas phase, in Twenty-First Symposium (International) on Combustion, pp. 1953–1963, The Combustion Institute, Pittsburgh.

    Google Scholar 

  • Melius, C. F., Bergan, N. E., and Shepherd, J. E., 1991, Effects of water on combustion kinetics at high pressure, in Twenty-Third Symposium (International) on Combustion, pp. 217–223, The Combustion Institute, Pittsburgh.

    Google Scholar 

  • Oyumi, Y., and Brill, T. B., 1985a, Thermal decomposition of energetic materials 3. A high-rate, in situ, FTIR study of the thermolysis of HMX and RDX with pressure and heating rate as variable, Combust. Flame 62:213–224.

    Article  CAS  Google Scholar 

  • Oyumi, Y., and Brill, T. B., 1985b, Thermal decomposition of energetic materials 4. High-rate, in situ, thermolysis of four, six, and eight membered, oxygen-rich, gem-dinitroalkyl cyclic nitramines, TNAZ, DNNC and HNDZ, Combust. Flame 62:225–231.

    Article  CAS  Google Scholar 

  • Oyumi, Y., and Brill, T B., 1988, Thermal decomposition of energetic materials 28. Predictions and results for nitramines of Bis-imidazolidinedione: DINGU, TNGU and TDCD, Prop. Explos. Pyrotech. 13:69–73.

    Article  CAS  Google Scholar 

  • Oyumi, Y., Brill, T B., and Rheingold, A. L., 1985, Thermal decomposition of energetic materials 7. High-rate FTIR studies and the structure of 1,1,1,3,6,8,8,8-Octanitro-3,6-diazaoctane, J. Phys. Chem. 89:4824–4828.

    Article  CAS  Google Scholar 

  • Oyumi, Y., Brill, T. B., and Rheingold, A. L., 1986a, Thermal decomposition of energetic materials 9. Polymorphism, crystal structures and thermal decomposition of polynitroazabicyclo[3.3.1]nonanes, J. Phys. Chem. 90:2526–2533.

    Article  CAS  Google Scholar 

  • Oyumi, Y., Rheingold, A. L., and Brill, T. B., 1986b, Thermal decomposition of energetic materials 16. Solid-phase structural analysis and the thermolysis of 1,4-dinitrofurazano[3,4-b]piperazine, J. Phys. Chem. 90:4686–4690.

    Article  CAS  Google Scholar 

  • Oyumi, Y., Rheingold, A. L., and Brill, T. B., 1987a, Thermal decomposition of energetic materials 18. Bis(cyanomethyl)nitramine and bis(cyanoethyl)nitramine, Prop. Explos. Pyrotech. 12:1–7.

    Article  CAS  Google Scholar 

  • Oyumi, Y., Rheingold, A. L., and Brill, T. B., 1987b, Thermal decomposition of energetic materials 19. Unusual condensed phase and thermolysis properties of a mixed azidomethyl ntramine: 1,7Diazido-2,4,6-trinitro-2,4,6-triazaheptane, J. Phys. Chem. 91:920–925.

    Article  CAS  Google Scholar 

  • Oyumi, Y., Brill, T. B., and Rheingold, A. L., 1987c, Thermal decomposition of energetic materials 20. A comparison of the structure properties and thermal reactivity of an acyclic and cyclic tetramethylenetetranitramine pair, Thermochim. Acta 114:209–225.

    Article  CAS  Google Scholar 

  • Palopoli, S. F., and Brill, T. B., 1991, Thermal decomposition of energetic materials 52. On the foam zone and surface chemistry of rapidly decomposing HMX, Combust. Flame 87:45–60.

    Article  CAS  Google Scholar 

  • Rosser, W. A., and Wise, H., 1956, Gas phase oxidation of ammonia by nitrogen dioxide, J. Chem Phys. 25:1078–1079.

    CAS  Google Scholar 

  • Schwartz, W. W, Askins, R. E., and Flanigan, D. A., 1984, Nitramine Combustion, Report AFRPL TR-84–012, Air Force Rocket Propulsion Laboratory, Edwards AFB, California, April. Shackelford, S. A., 1987, In situ determination of exothermic transient phenomena: Isotopic labeling studies, J. Phys. 48 (C4):193–207.

    Google Scholar 

  • Shackelford, S. A., Coolidge, M. B., Goshgarian, B. B., Loving, B. A., Rogers, R. N., Janney, J. L., and Ebinger, M. H., 1985, Deuterium isotope effects in condensed-phase thermochemical decomposition reactions of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine, J. Phys. Chem. 89:3118–3126.

    Article  CAS  Google Scholar 

  • Shaw, R., and Walker, F. E., 1977, Estimated kinetics and thermochemistry of some initial unimolecular reactions in the thermal decomposition of 1,3,5,7-tetrazacyclooctane in the gas phase, J. Phys. Chem. 81:2572–2576.

    Article  CAS  Google Scholar 

  • Shepherd, J. E., and Brill, T. B., 1993, Interpretation of time-to-explosion tests, in Tenth International Symposium on Detonation, Office of Naval Research, in press.

    Google Scholar 

  • Stals, J., and Pitt, M. J., 1975, Investigations of the thermal stability of nitroguanidine below its melting point, Aust. J. Chem. 28:2629–2640.

    Article  CAS  Google Scholar 

  • Stoner, C. E, and Brill, T. B., 1991, Thermal decomposition of energetic materials 46. The formation of melamine-like cyclic azines as a mechanism for ballistic modification of composite propellants by DCD, DAG and DAF, Combust. Flame 83:302–308.

    Article  CAS  Google Scholar 

  • Swett, M., 1992, Naval Weapons Center, China Lake, California, personal communication.

    Google Scholar 

  • Volk, E, 1985, Determination of gaseous and solid decomposition products of nitroguanidine, Prop. Explos. Pyrotech. 10:139–146.

    Article  CAS  Google Scholar 

  • Whittaker, A. G., and Barham, D. C., 1964, Surface temperature measurements on burning solids, J. Phys. Chem. 68:196–199.

    Article  Google Scholar 

  • Williams, G. F., Palopoli, S. F, and Brill, T. B., 1994, Thermal decomposition of energetic materials 66. Thermal conversion of insensitive explosives and related compounds to polymeric cyclic azine flame retardants, Combust. Flame 98:197–204.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brill, T.B. (1995). Chemistry of a Burning Propellant Surface. In: Hargittai, I., Vidóczy, T. (eds) Combustion Efficiency and Air Quality. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1827-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1827-3_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5739-1

  • Online ISBN: 978-1-4615-1827-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics