Vaccine Design pp 875-890 | Cite as

Development of Active Specific Immunotherapeutic Agents Based on Cancer-Associated Mucins

  • John Samuel
  • B. Michael Longenecker
Part of the Pharmaceutical Biotechnology book series (PBIO, volume 6)


The immune system offers the most effective line of defense against infectious organisms. Cancer immunologists are currently attempting to direct the unique defense mechanisms of the immune system to mediate tumor rejection. This approach is based on the assumption that cancer cells express aberrant molecules that have the potential to be recognized by the immune system as “foreign.” If such cancer-specific targets can be identified, they may be used as active specific immunotherapeutic (ASI) agents to induce specific immune responses against the cells expressing such structures. Such responses may result in cancer rejection.


Keyhole Limpet Hemocyanin Core Peptide MUCI Mucin Active Specific Immunotherapy Multiple Antigen Peptide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anichini, A., Fossati, G., and Parmiani, G., 1986, Heterogeneity of clones from human metastatic melanoma detected by autologous cytotoxic T lymphocyte clones, J. Exp. Med. 163:215–220.PubMedCrossRefGoogle Scholar
  2. Bobek, L. A., Tsai, H., Biesbrock, A. R., and Levine, M. J., 1993, Molecular cloning, sequence, and specificity of expression of the gene encoding the low molecular weight human salivary mucin, J. Biol. Chem. 268:20563–20569.PubMedGoogle Scholar
  3. Boon, T., 1993, Teaching the immune system to fight cancer, Sci. Am. 266:82–89.CrossRefGoogle Scholar
  4. Boon, T., De Plaen, E., Larquin, C., Van den Eynde, B., van der Bruggen, P., Traversari, C., Amar-Costesec, A., and Van Pel, A., 1992, Identification of tumour rejection antigens recognized by T lymphocytes, in: A New Look at Tumor Immunology (A. J. McMichael and W. F. Bodmer, eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 23–37.Google Scholar
  5. Botarelli, P., Houlden, B., Haigwood, N., Seevis, C., Montagna, D., and Abrignani, S., 1991, N-Glycosylation of HIV-gpl20 may constrain recognition by T lymphocytes, J. Immunol. 147:3128–3132.PubMedGoogle Scholar
  6. Brand, D. L., Lan, M. S., Metzgar, R. S., and Finn, O. J., 1989, Specific, MHC-unrestricted recognition of tumor-associated mucins by human cytotoxic T cells, Proc. Nail. Acad. Sci. USA 86:7159–7164.CrossRefGoogle Scholar
  7. Burchell, J., and Taylor-Papadimitriou, J., 1993, Effect of modification of carbohydrate side chains on the reactivity of antibodies with core protein epitopes of the MUC1 gene product, Epithelial Cell Biol. 2:155–162.PubMedGoogle Scholar
  8. Burchell, J., Gendler, S., Taylor-Papadimitriou, J., Girling, A., Lewis, A., Millis, R., and Lamport, D., 1987, Development and characterization of breast cancer reactive monoclonal antibodies directed to the core protein of the human milk mucin, Cancer Res. 47:5476–5482.PubMedGoogle Scholar
  9. Capon, C., Laboisse, C., Wieruszeski, J. M., Maoret, J. J., Augeron, C., and Fournet, B., 1992, Oligosaccharide structures of mucins secreted by human colonie cancer cell line CL. 16E, J. Biol. Chem. 267:19248–19257.PubMedGoogle Scholar
  10. Clerici, M., and Shearer, G. M., 1993, ATh1→Th2 switch is a critical step in the etiology of HIV infection, Immunol. Today 14:107–111.PubMedCrossRefGoogle Scholar
  11. Coon, J. S., Weinstein, R. S., and Summers, J. L., 1982, Blood group precursor T-antigen expression in human urinary bladder carcinoma, Am. J. Clin. Pathol. 77:692–699.PubMedGoogle Scholar
  12. Crowley, N. J., Darrow T. L., Quinn-Allen, M. A., and Siegler, H. F., 1991, MHC-restricted recognition of autologous melanoma by tumor-specific cytotoxic T lymphocytes: Evidence for recognition by a dominant HLA-A allele, J. Immunol. 146:1692–1699.PubMedGoogle Scholar
  13. Degiovanni, G., Hainaut, P., Lehaye, T., Weynauts, P., and Boon, T., 1990, Antigen recognized on melanoma cell line by autologous cytotoxic T lymphocytes are also expressed on freshly collected tumor cells, Eur. J. Immunol. 18:671–676.CrossRefGoogle Scholar
  14. Deres, K., Schild, H., Weismuller, K.-H., Jung, G., and Rammensee, H.-G., 1989, In vivo priming of virus-specific cytotoxic T lymphocytes with synthetic lipopeptide vaccine, Nature 342:561–564.PubMedCrossRefGoogle Scholar
  15. Devine, P. L., and McKenzie, I. F. C., 1992, Mucins: Structure, function, and associations with malignancy, BioEssays 14:619–625.PubMedCrossRefGoogle Scholar
  16. Devine, P. L., Warren, J. A., Ward, B. G., McKenzie, I. F. C., and Layton, G. T., 1990, Glycosylation and exposure of tumor-associated epitopes on mucins, J. Tumor Marker Oncol. 5:11–26.Google Scholar
  17. Ding, L., Lalani, E.-N., Reddish, M., Koganty, R., Wong, T., Samuel, J., Yacyshyn, M. B., Taylor-Papadimitriou, J., and Longenecker, B. M., 1993, Immunogenicity of synthetic peptides related to the core-peptide sequence encoded by the human MUC1 mucin gene: Effect of immunization on the growth of murine mammary adenocarcinoma cells tansfected with the human MUC1 gene, Cancer Immunol. Immunother. 36:9–17.PubMedCrossRefGoogle Scholar
  18. Drummer, H. E., Jackson, D. C., and Brown, L. E., 1993, Modulation of CD4+ T-cell recognition of hemagglutination by carbohydrate side chains located outside a T-cell determinant, Virology 192:282–289.PubMedCrossRefGoogle Scholar
  19. Fearon, E. R., Pardoll, D. M., Itaya, T., Golumber, P., Levitsky, H., Simons, J. W., Karasuyama, H., Vogelstein, B., and Frost, P., 1990, Interleukin-2 production by tumor cells bypass T helper function in the generation of anti-tumor response, Cell 60:397–403.PubMedCrossRefGoogle Scholar
  20. Fenton, R. G., Taub, D. D., Kwak, L. W., Smith, M. R., and Longo, D. L., 1993, Cytotoxic T cell response and in vivo protection against tumor cells in harboring activated ras proto-oncogenes, J. Nail Cancer Inst. 85:1294–1302.CrossRefGoogle Scholar
  21. Ferrini, S., Biassoni, R., Moretta, A., Bruzzone, M., Nicolin, A., and Moretta, L., 1985, Clonal analysis of T lymphocytes isolated from ovarian carcinoma ascitic fluid: Phenotype and functional characterization of T-cell clones capable of lysing autologous carcinoma cells, Int. J. Cancer 36:337–343.PubMedGoogle Scholar
  22. Fisch, P., Weil-Hilman, G., Uppenskimp, M., Hank, J., Chen, B., Sosman, J., Bridges, A., Colamonici, O., and Sondel, P., 1989, Antigen-specific recognition of autologous leukemia cells and allogenic class-I MHC antigens by IL-2 activated cytotoxic T cells from a patient with acute T-cell leukemia, Blood 74:343–353.PubMedGoogle Scholar
  23. Fitch, F. W., Mckisic, M. D., Lanchi, D. W., and Gajewski, T. F., 1993, Differential regulation of murine T lymphocyte subsets, Annu. Rev. Immunol. 11:29–48.PubMedCrossRefGoogle Scholar
  24. Fung, P. Y. S., Madej, M., Koganty, R., and Longenecker, B. M., 1990, Active specific immunotherapy of a murine mammary adenocarcinoma using a synthetic tumor-associated glycoconjugate, Cancer Res. 50:4308–4314.PubMedGoogle Scholar
  25. Furukawa, K. S., Furukawa, K., Real, F. X., Old, L. J., and Loyd, K. O., 1989, A unique antigenic epitope of human melanoma is carried on the common melanoma glycoprotein gp95/p97, J. Exp. Med. 169:585–590.PubMedCrossRefGoogle Scholar
  26. Gendler, S. J., Lancaster, C. A., Taylor-Papadimitriou, J., Duhig, T., Peat, N., Burchell, J., Pemberton, L., Lalani, E.-N., and Wilson, D., 1990, Molecular cloning and expression of human tumor-associated polymorphic epithelial mucin, J. Biol. Chem. 265:15286–15293.PubMedGoogle Scholar
  27. Girling, A., Bartkova, J., Burchell, J., Gendler, S., Gillet, C., and Taylor-Papadimitriou, J., 1989, A core epitope of the polymorphic epithelial mucin detected by the monoclonal antibody SM-3 is selectively exposed in a range of primary carcinomas, Int. J. Cancer 43:1072–1076.PubMedCrossRefGoogle Scholar
  28. Gum, J. R., Byrd, J. C., Hicks, J. W., Toribara, N. W., Lamport, D. T. A., and Kim, Y. S., 1989, Molecular cloning of human intestinal mucin cDNAs. Sequence analysis and evidence for genetic polymorphism, J. Biol. Chem. 264:6480–6487.PubMedGoogle Scholar
  29. Gum, J. R., Hicks, J. W., Swallow, D. M., Lagase, R. L., Byrd, J. C., Lamport, D. T. A., Siddiki, B., and Kim, Y. S., 1990, Molecular cloning of cDNAs derived from a novel human intestinal mucin gene, Biochem. Biophys. Res. Commun. 171:407–415.PubMedCrossRefGoogle Scholar
  30. Hakamori, S., 1989, Aberrant glycosylation in tumors and tumor-associated carbohydrate antigens, Adv. Cancer Res. 52:257–331.CrossRefGoogle Scholar
  31. Hanisch, F.-G., Uhlenbruck, G., Peter-Katalinic, J., Egge, H., Dabrowski, J., and Dabrowski, U., 1989a, Structure of neutral and O-linked polylactosaminoglycans on human skim milk mucins, J. Biol. Chem. 264:872–883.PubMedGoogle Scholar
  32. Hanisch, F.-G., Uhlenbruck, G., Egge, H., and Peter-Katalinic, J., 1989b, AB72.3 second generation-monoclonal antibody (CC49) defined the mucin-carried carbohydrate epitope Galβ(1–3) NeuAc(2–6)Gal-Nac, Biol. Chem. Hoppe Seyler 370:21–26.PubMedCrossRefGoogle Scholar
  33. Hareuveni, M., Gautier, C., Kieny, M. P., Wreschner, D., Chambon, P., and Lathe, R., 1990, Vaccination against tumor cells expressing breast cancer epithelial tumor antigen, Proc. Natl. Acad. Sci. USA 87:9498–9502.PubMedCrossRefGoogle Scholar
  34. Hewit, H., Blake, E. R., and Walder, A. S., 1976, A critique of the evidence for active host defence against cancer based on personal studies of 27 murine tumors of spontaneous origin, Br. J. Cancer 33:241–259.CrossRefGoogle Scholar
  35. Hull, S. R., Bright, A., Carraway, K. L., Abe, M., Hayes, D. F., and Kufe, D. W., 1989, Oligosaccharide differences in DF3 sialomucin antigen from normal human milk and BT-20 human breast carcinoma cell line, Cancer Commun. 1:261–267.PubMedGoogle Scholar
  36. Ionnides, C. G., Fisk, B., Jerome, K. R., Irimura, T., Wharton, J. T., and Finn, O. J., 1993, Cytotoxic T cells from ovarian malignant tumors can recognize polymorphic epithelial mucin core peptides, J. Immunol. 151:3693–3703.Google Scholar
  37. Itzkowitz, S. H., Yuan, M., Montgomery, C. K., Kjelsein, T., Takahashi, H. K., Bigbee, W. L., and Kim, Y. S., 1989, Expression of Tn, sialosyl-Tn, and T antigens in human colon cancer, Cancer Res. 49:197–204.PubMedGoogle Scholar
  38. Itzkowitz, S. H., Bloom, E. J., Kokal, W. A., Modin, G., Hakamori, S.-I., and Kim, Y. S., 1990, Sialosyl-Tn: A novel mucin antigen associated with prognosis in colorectal cancer patients, Cancer 66:1960–1966.PubMedCrossRefGoogle Scholar
  39. Jerome, K. R., Brand, D. L., Bendt, K. M., Boyer, C. M., Taylor-Papadimitriou, J., McKenzie, I. F. C., Bast, R. C., Jr., and Finn, O.J., 1991, Cytotoxic T lymphocytes derived from patients with breast adenocarcinoma recognize an epitope present on the protein core of a mucin molecule preferentially expressed by malignant cells, Cancer Res. 51:2908–2916.PubMedGoogle Scholar
  40. Jerome, K. R., Domenech, N., and Finn, O. J., 1993, Tumor-specific cytotoxic T cell clones from patients with breast and pancreatic adenocarcinoma recognize EBV-immortalized B cells transfected with polymorphic epithelial mucin complementary DNA, J. Immunol. 151:1654–1662.PubMedGoogle Scholar
  41. Jung, S., and Schluesener, H. J., 1991, Human T lymphocytes recognize a peptide of single point-mutated, oncogenic ras proteins, J. Exp. Med. 173:273–276.PubMedCrossRefGoogle Scholar
  42. Kan-Mitchell, J., Huang, X.-Q., Steinman, L., Oksenberg, J. R., Harel, W., Parker, J. W., Goedegebuure, P. S., Darrow, T. L., and Mitchell, M. S., 1993, Clonal analysis of in vivo activated CD8+ cytotoxic T lymphocytes from melanoma patient responsive to active specific immunotherapy, Cancer Immunol. Immunother. 37: 15–25.PubMedCrossRefGoogle Scholar
  43. Khera, K. S., Ashkenazi, A., Rapp, F., and Melnick, J. F., 1963, Immunity in hamsters to cells transformed in vitro among the papavo viruses, J. Immunol. 91:604–613.PubMedGoogle Scholar
  44. Klein, G., and Klein, E., 1964, Amigenic properties of lymphomas induced by Moloney agent, J. Natl. Cancer Inst. 32:547–568.PubMedGoogle Scholar
  45. Klein, G., Sjogren, H. O., Klein, E., and Hellstrom, K. E., 1960, Demonstration of resistance against methylcholanthrene-induced sarcomas in primary autochthonous host, Cancer Res. 20:1561–1576.PubMedGoogle Scholar
  46. Knuth, A., Wolfel, T., and Meyer Zum Buschenfelde, K.-H., 1992, T cell responses to human malignant tumors, in: A New Look at Tumor Immunology (A. J. McMichael and W. F Bodmer, eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 39–52.Google Scholar
  47. Kobayashi, H., Toshihiko, T., and Kawashima, Y., 1992, Serum sialyl Tn as an independent predictor of poor prognosis in patients with epithelial ovarian cancer, Clin. Oncol. 10:95–101.Google Scholar
  48. Lalani, E.-N., Bedichevsky, F., Boshell, M., Shearer, M., Wilson, D., Stauss, H., Gendler, S. J., and Taylor-Papadimitriou, J., 1991, Expression of the gene coding for a human mucin in mouse mammary tumor cell can affect their tumorigenicity, J. Biol. Chem. 266:15420–15426.PubMedGoogle Scholar
  49. Lan, M. S., Hollingsworth, M. A., and Metzgar, R. S., 1990, Polypeptide core of a human pancreatic tumor mucin antigen, Cancer Res. 50:2997–3001.PubMedGoogle Scholar
  50. Leathern, A. J., and Brooks, S. A., 1987, Predictive value of lectin binding on breast cancer recurrence and survival, Lancet 1:1054–1056.Google Scholar
  51. LeMay, L. G., Kan-Mitchell, J., Goedegebuure, P., Harel, W., and Mitchell, M. S., 1993, Detection of melanoma-reactive CD4+ HLA-class I-restricted cytotoxic T cell clones with long-term assay and pretreatment of targets with interferon-γ, Cancer Immunol. Immunother. 37:187–194.PubMedCrossRefGoogle Scholar
  52. Litenberg, M. J. L., Vos, H. L., Gennisen, A. M. C., and Hilkens, J., 1990, Episialin, a carcinoma-associated mucin, is generated by a polymorphic gene encoding splice variants with alternate amino termini, J. Biol. Chem. 265:5573–5578.Google Scholar
  53. Livingston, P. O., 1993, Approaches to augmenting the IgG antibody response to melanoma ganglioside vaccines, Ann. N.Y. Acad. Sci. 690:204–213.PubMedCrossRefGoogle Scholar
  54. Livingston, P. O., Natoli, E. J., Jr., Calves, M. J., Stockert, E., Oettgen, H. F., and Old, L. J., 1987, Vaccines containing purified GM2 ganglioside elicit GM2 antibodies in melanoma patients, Proc. Natl. Acad. Sci. USA 84:2911–2915.PubMedCrossRefGoogle Scholar
  55. Locksley, R. M., and Scott, P., 1991, Helper T cell subsets in leishmaniasis: Induction, expansion and effector functions, Immunol. Today 12:A58–A61.PubMedCrossRefGoogle Scholar
  56. Longenecker, B. M., and MacLean, G. D., 1993, Prospects for mucin epitopes in cancer vaccines, Immunologist 1:89–93.Google Scholar
  57. Longenecker, B. M., Reddish, M., Koganty, R., and MacLean, G. D., 1993, Immune responses of mice and human breast cancer patients following immunization with synthetic sialyl-Tn conjugated to KLH plus Detox adjuvant, Ann. N.Y. Acad. Sci. 690:276–291.PubMedCrossRefGoogle Scholar
  58. MacLean, G. D., and Longenecker, B. M., 1991, Clinical significance of the Thomsen-Friedenreich antigen, Semin. Cancer Biol. 2:431–440.Google Scholar
  59. MacLean, G. D., Bowen-Yacyshyn, M. B., Samuel, J., Meikle, A., Stuart, G., Nation, J., Poppema, S., Jerry, M., Koganty, R., Wong, T., and Longenecker, B. M., 1992, Active immunization of breast cancer patients against a common carcinoma (Thomsen-Friedenreich) determinant using a synthetic carbohydrate antigen, J. Immunother. 11:292–305.PubMedCrossRefGoogle Scholar
  60. MacLean, G. D., Reddish, M. A., Koganty, R. R., Wong, T., Gandhi, S., Smolenski, M., Samuel, J., Naholtz, J. M., and Longenecker, B. M. 1993, Immunization of breast cancer patients using a synthetic sialyl-Tn glycoconjugate plus DETOXTM adjuvant, Cancer Immunol. Immunother. 36:215–222.PubMedCrossRefGoogle Scholar
  61. McMichael, A. J., and Bodmer, W. F. (eds.), 1992, A New Look at Tumor Immunology, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  62. Melief, C. J. M., 1992, Tumor eradication by adoptive transfer of cytotoxic T lymphocytes, Adv. Cancer Res. 58:143–175.PubMedCrossRefGoogle Scholar
  63. Middle, J., and Embleton, M., 1981, Naturally arising tumors of inbred WAB/Notrat strain II. Immunogenicity of transplanted tumors, J. Natl. Cancer Inst. 67:637–643.PubMedGoogle Scholar
  64. Mitchell, M. S., Harel, W., Kan-Mitchell, J., LeMay, L. G., Goedegeburre, P., Huang, X. Q., Hofman, F., and Gorshen, S., 1993, Active specific immunotherapy of melanoma with allogeneic cell lysates. Rationale, results, and possible mechanisms of action, Ann. N.Y. Acad. Sci. 690:153–166.PubMedCrossRefGoogle Scholar
  65. Mosmann, T. R., and Coffman, R. L., 1989, TH1 and TH2 cells: Different pattern of lymphokine secretion lead to different functional properties, Annu. Rev. Immunol. 7:145–173.PubMedCrossRefGoogle Scholar
  66. Nagarkatti, M., Clary, S. R., and Nagarkatti, P. S., 1990, Characterization of tumor-infiltrating CD4+ T cells as Th1 cells based on lymphokine secretion and functional properties, J. Immunol. 144:4898–4906.PubMedGoogle Scholar
  67. Newman, M. J., Wu, J.-Y., Gardner, H., Munroe, K. J., Leombruno, D., Recchia, J., Kensil, C. R., and Coughlin, R. T., 1992, Saponin adjuvant induction of ovalbumin-specific CD8+ cytotoxic T lymphocyte responses, J. Immunol. 148:2357–2362.PubMedGoogle Scholar
  68. Old, L. J., 1981, Cancer immunology: The search for specificity—GHA Clowes Memorial Lecture, Cancer Res. 41:361–375.PubMedGoogle Scholar
  69. Pardoll, D. M., 1993, Cancer vaccines, Immunol. Today 14:310–316.PubMedCrossRefGoogle Scholar
  70. Peat, N., Gendler, S. J., Lalani, E.-N., Duhig, T., and Taylor-Papadimitriou, J., 1992, Tissue-specific expression of a human polymorphic epithelial mucin (MUC1) in transgenic mice, Cancer Res. 52:1954–1960.PubMedGoogle Scholar
  71. Porchet, N., Nguyen, V. C., Dufosse, J., Audre, J. P., Guyonnet-Duperat, V., Gross, M. S., Denis, C., Degand, P., Bernheim, A., and Aubert, J. P., 1991, Molecular cloning and chromosomal location of tracheo-broncheal mucin cDNA containing tandemly repeated sequences of 48 base pairs, Biochem. Biophys. Res. Commun. 175:414–422.PubMedCrossRefGoogle Scholar
  72. Prehan, R. T., and Main, M. J., 1957, Immunity to methylcholanthrene-induced sarcomas, J. Natl. Cancer Inst. 18:769–778.Google Scholar
  73. Romagnani, S., 1991, Human TH1 and TH2 subsets; doubt no more, Immunol. Today 12:256–257.PubMedCrossRefGoogle Scholar
  74. Ryghetti, A., Turchi, V., Ghetti, C. A., Scambia, G., Panici, P. B., Roncucci, G., Mancuso, S., Frati, L., and Nuti, M., 1993, Human B cell immune response to the polymorphic epithelial mucin, Cancer Res. 53:2457–2459.Google Scholar
  75. Samuel, J., Noujaim, A. A., MacLean, G. D., Suresh, M. R., and Longenecker, B. M., 1990, Analysis of human tumor-associated Thomsen-Friedenreich antigen, Cancer Res. 50:4801–4808.PubMedGoogle Scholar
  76. Sato, T., Sato, N., Takahashi, S., Koshiba, H., and Kikuchi, K., 1986, Specific cytotoxicity of a long-term cultured T-cell clone on human autologous mammary cancer cells, Cancer Res. 46:4384–4389.PubMedGoogle Scholar
  77. Schachter, H., and Brockhausen, I., 1989, The biosynthesis of branched O-glycans, in: Mucus and Related Topics (E. Chantier and N. A. Ratcliff, eds.), The Company of Biologists Ltd., Cambridge, pp. 1–26.Google Scholar
  78. Singhal, A., and Hakamori, S., 1990, Molecular changes in carbohydrate antigens associated with cancer, BioEssays 12:223–230.PubMedCrossRefGoogle Scholar
  79. Singhal, A., Fohn, M., and Hakamori, S.-I., 1991, Induction of α-N-acetylgalactosamine-O-serine/threonine (Tn) antigen-mediated cellular immune response for active immunotherapy in mice, Cancer Res. 51:1406–1411.PubMedGoogle Scholar
  80. Solvin, S. F., Lackman, R. D., Ferrone, S., Kiely, P. E., and Mastrangelo, M. J., 1986, Cellular immune response to human sarcomas: Cytotoxic T cell clones reactive with autologous sarcomas I. Development, phenotype and specificity, J. Immunol. 137:3042–3048.Google Scholar
  81. Spicer, A. P., Parry, G., Patton, S., and Gendler, S. J., 1991, Molecular cloning and analysis of the mouse homologue of the tumor-associated mucin, MUC1, reveals conservation of potential O-glycosylation sites, transmembrane, and cytoplasmic domains and loss of minisatellite-like polymorphism, J. Biol. Chem. 266:15099–15109.PubMedGoogle Scholar
  82. Springer, G. F., 1984, T and Tn, general carcinoma auto antigens, Science 224:1198–1206.PubMedCrossRefGoogle Scholar
  83. Strous, G. J., and Dekker, J., 1992, Mucin-type glycoproteins, Crit. Rev. Biochem. Mol. Biol. 57-92.Google Scholar
  84. Thomas, D. B., Hodgson, J., Riska, J. F., and Graham, C. M., 1990, The role of endoplasmic reticulum in antigen processing. N-glycosylation of influenza hemagglutinin abrogates CD4+ cytotoxic T cell recognition of endogenously processed antigen, J. Immunol. 144:2789–2794.PubMedGoogle Scholar
  85. Urban, J. L., and Schreiber, H., 1992, Tumor antigens, Annu. Rev. Immunol. 10:617–644.PubMedCrossRefGoogle Scholar
  86. Van den Eijnden, D. H., Evans, N. A., Codington, J. F., Reinhold, V., Silber, C., and Jeanloz, R. W., 1979, Chemical structure of epiglycanin, the major glycoprotein of the TA3-Ha ascites cell, J. Biol. Chem. 254:12153–12159.PubMedGoogle Scholar
  87. White, K., Krzych, U., Gordon, G. M., Porter, T. G., Richards, R. L., Alving, C. R., Deal, C. D., Hollingdale, M., Silverman, C., Selvester, D. R., Ballou, W. R., and Gross, M., 1993, Induction of cytolytic and antibody responses using Plasmodium falciparum repeatless circumsporozoite protein encapsulated in liposomes, Vaccine 11:1341–1346.PubMedCrossRefGoogle Scholar
  88. Wolf, M. F., Ludwig, A., Fritz, P., and Schumacher, K., 1988, Increased expression of Thomsen-Freidenreich (T) antigen during tumor progression in breast cancer patients, Tumor Biol. 9:190–194.CrossRefGoogle Scholar
  89. Wreshner, D. H., Haraveuni, M., Tsarfaty, I., Smorodinsky, N., Horev, J., Zaretsky, J., Kotkes, P., Weiss, M., Lathe, R., Dion, A., and Keydar, I., 1990, Human epithelial tumor antigen cDNA sequences, differential splicing may generate multiple protein forms, Eur. J. Biochem. 189:463–473.CrossRefGoogle Scholar
  90. Xing, P.-X., Prenzoska, J., Quelch, K., and McKenzie, I. F. C., 1992, Second generation anti-MUC1 peptide monoclonal antibodies, Cancer Res. 52:2310–2317.PubMedGoogle Scholar
  91. Yssel, H., Spits, H., and de Vries, J., 1984, Acloned human T cell line cytotoxic for autologous and allogeneic B lymphoma cells, J. Exp. Med. 160:239–254.PubMedCrossRefGoogle Scholar
  92. Zotter, S., Hageman, P. C., Lossnitzer, A., Mooi, W. J., and Hilgers, J., 1988, Tissue and tumor distribution of human polymorphic epithelial mucin, Cancer Rev. 11:55–101.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • John Samuel
    • 1
  • B. Michael Longenecker
    • 2
    • 3
  1. 1.Faculty of Pharmacy and Pharmaceutical SciencesUniversity of AlbertaEdmontonCanada
  2. 2.Department of Immunology, Faculty of MedicineUniversity of AlbertaEdmontonCanada
  3. 3.Biomira Inc.EdmontonCanada

Personalised recommendations