Advertisement

On the W-Gravity Spectrum and Its G-Structure

  • Peter Bouwknegt
  • Jim McCarthy
  • Krzysztof Pilch
Part of the NATO ASI Series book series (NSSB, volume 328)

Abstract

We present results for the BRST cohomology of W[g] minimal models coupled to W[g] gravity, as well as scalar fields coupled to W[g] gravity. In the latter case we explore an intricate relation to the (twisted) g cohomology of a product of two twisted Fock modules.

Keywords

Minimal Model Weyl Group Verma Module Ghost Number Weyl Chamber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. Bouwknegt, J. McCarthy and K. Pilch, USC-93/11, hep-th/9302086, Lett. Math. Phys. 29 (1993), to be published.Google Scholar
  2. [2]
    P. Bouwknegt, J. McCarthy and K. Pilch, On the BRST structure of W 3 gravity coupled to c = 2 matter, USC-93/14, hep-th/9303164.Google Scholar
  3. [3]
    J. Thierry-Mieg, Phys. Lett. B197 (1987) 368.MathSciNetADSGoogle Scholar
  4. [4]
    M. Bershadsky, W. Lerche, D. Nemeschansky and N.P. Warner, Phys. Lett. B292 (1992) 35. WB.MathSciNetADSGoogle Scholar
  5. [5]
    V. Sadov, On the spectra of sl(N)k/sl(N)k -cosets and W N gravities, HUTP-92/A055, hep-th/9302060; The hamiltonian reduction of the BRST complex and N = 2 SUSY, HUTP-93/A006, hep-th/9304049.Google Scholar
  6. [6]
    O. Aharony, O. Ganor, J. Sonnenschein and S. Yankielowicz, Phys. Lett. B305 (1993) 35; and references therein.MathSciNetADSGoogle Scholar
  7. [7]
    M. Bershadsky, W. Lerche, D. Nemeschansky and N.P. Warner, Nucl. Phys. B401 (1993) 304.MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    H. Lu, C.N. Pope, X.J. Wang and K.W. Wu, The complete spectrum of the W 3 string, CTP TAMU 50/93, hep-th/9309041, and references therein.Google Scholar
  9. [9]
    I.N. Berstein, I.M. Gel’fand and S.I. Gel’fand, in: Proc. Summer School of the Bolyai János Math. Soc., ed. I.M. Gel’fand (New York, 1975).Google Scholar
  10. [10]
    B.L. Feigin, Usp. Mat. Nauk 39 (1984) 195.MathSciNetzbMATHGoogle Scholar
  11. [11]
    B.L. Feigin and E.V. Frenkel, Comm. Math. Phys. 128 (1990) 161.MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. [12]
    P. Bouwknegt, J. McCarthy and K. Pilch, J. Geom. Phys. 11 (1993) 225.MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. [13]
    R. Bott, Ann. Math. 66 (1957) 203; B. Kostant, Ann. Math. 74 (1961) 329.MathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    M. Wakimoto, Comm. Math. Phys. 104 (1986) 605.MathSciNetADSzbMATHCrossRefGoogle Scholar
  15. [15]
    P. Bouwknegt, J. McCarthy and K. Pilch, Prog. Theor. Phys. Suppl. 102 (1990) 67.MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    J.E. Humphreys, Reflection groups and Coxeter groups, Cambridge University Press (1990).Google Scholar
  17. [17]
    O. Gabber and A. Joseph, Ann. Sci. Ec. Norm. Sup. 14 (1981) 261; B.D. Boa, Contemp. Math. 139 (1991) 1; K.J. Karlin, Trans. Amer. Math. Soc. 249 (1986) 29.MathSciNetzbMATHGoogle Scholar
  18. [18]
    D. Kazhdan and G. Lustig, Inv. Math. 53 (1979) 165.ADSzbMATHCrossRefGoogle Scholar
  19. [19]
    P. Bouwknegt and K. Schoutens, Phys. Rep. 223 (1993) 183.MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    H. Lu, C.N. Pope and X.J. Wang, On higher-spin generalizations of string theory, CTP TAMU-22/93, hep-th/9304115; K. Hornfeck, Explicit construction of the BRST charge for W 4, DFTT-25/93, hep-th/9306019; C.-J. Zhu, The BRST quantization of the nonlinear 2 and W 4 algebras, SISSA/77/93/EP, hep-th/9306026.Google Scholar
  21. [21]
    B.H. Lian and G.J. Zuckerman, Phys. Lett. B254 (1991) 417; Phys. Lett. B266 (1991) 21; Comm. Math. Phys. 145 (1992) 561.MathSciNetADSGoogle Scholar
  22. [22]
    E. Frenkel, W-algebras and Langlands-Drinfel’d correspondence, in Proc. of the 1991 Cargèse workshop on “New Symmetry Principles in Quantum Field Theory,” eds. J. Fröhlich et. al., Plenum Press (1992).Google Scholar
  23. [23]
    M. Niedermaier, Comm. Math. Phys. 148 (1992) 249.MathSciNetADSzbMATHCrossRefGoogle Scholar
  24. [24]
    P. Bouwknegt, J. McCarthy and K. Pilch, Comm. Math. Phys. 145 (1992) 541.MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Peter Bouwknegt
    • 1
  • Jim McCarthy
    • 2
  • Krzysztof Pilch
    • 1
  1. 1.Department of Physics and AstronomyUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Department of Physics and Mathematical PhysicsUniversity of AdelaideAdelaideAustralia

Personalised recommendations