Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 328))

  • 460 Accesses

Abstract

I argue that the complete partition function of 3D quantum gravity is given by a path integral over gauge-inequivalent manifolds times the Chern-Simons partition function. In a discrete version, it gives a sum over simplicial complexes weighted with the Turaev-Viro invariant. Then, I discuss how this invariant can be included in the general framework of lattice gauge theory (qQCD3). To make sense of it, one needs a quantum analog of the Peter-Weyl theorem and an invariant measure, which are introduced explicitly. The consideration here is limited to the simplest and most interesting case of SL q (2), q = \( {{e}^{{i\frac{{2\pi }}{{k + 2}}}}} \). At the end, I dwell on 3D generalizations of matrix models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. David, “Simplicial quantum gravity and random lattices”, Les Houches lectures, Session LVII (1992).

    Google Scholar 

  2. E. Witten, Nucl. Phys. B311 (1988/89) 46 and B323 (1989) 113.

    Article  MathSciNet  ADS  Google Scholar 

  3. V.G. Turaev and O.Y. Viro, Topology 31 (1992) 865.

    Article  MathSciNet  MATH  Google Scholar 

  4. H. Ooguri and N. Sasakura, Mod. Phys. Lett. A6 (1991) 3591; F. Archer and R.M. Williams, Phys.Lett. B273 (1991) 438.

    MathSciNet  ADS  Google Scholar 

  5. G. Ponzano and T. Regge, in Spectroscopic and group theoretical methods in physics, ed. F. Bloch (North-Holland, Amsterdam, 1968).

    Google Scholar 

  6. T. Regge, Nuovo Cimento 19 (1961) 558.

    Article  MathSciNet  Google Scholar 

  7. M.E. Agishtein and A.A. Migdal, Mod. Phys. Lett. A6 (1991) 1863; J. Ambjørn and S. Varsted, Phys. Lett. B226 (1991) 258 and Nucl. Phys. B373 (1992) 557.

    MathSciNet  ADS  Google Scholar 

  8. D.V. Boulatov and A. Krzywicki, Mod. Phys. Lett. A6 (1991) 3005; J. Ambjørn, D.V. Boulatov, A. Krzywicki and S. Varsted, Phys. Lett. B276 (1992) 432.

    MathSciNet  ADS  Google Scholar 

  9. J. Ambjørn, Z. Burda, J. Jurkiewicz and C.F. Crist Jansen, Phys. Lett. B297 (1992) 253.

    ADS  Google Scholar 

  10. M. Agishtein and A.A. Migdal, Mod. Phys. Lett. A7 (1992) 1039; J. Ambjørn and J. Jurkiewicz, Phys. Lett. B278 (1992) 42.

    MathSciNet  ADS  Google Scholar 

  11. See for example, C. Nash, Differential topology and quantum field theory, Academic Press; chap. 1 and references therein.

    Google Scholar 

  12. K. Wilson, Phys. Rev. D10 (1975) 2445.

    ADS  Google Scholar 

  13. L.D. Faddeev, N. Reshetikhin and L. Takhtajan, Leningrad Math. J 1 (1990) 193.

    MathSciNet  MATH  Google Scholar 

  14. S.L. Woronowicz, Commun. Math. Phys. 111 (1987) 613; L.L. Vaksman and Ya.S. Soibelman, Func. Anal. Appl. 22 (1988) 170.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. N. Yu.Reshetikhin and V.G. Turaev, Commun. Math. Phys. 124 (1989) 307 and Invent. Math. 103 (1991) 547.

    Article  ADS  Google Scholar 

  16. P. Roche and D. Arnaucon, Lett. Math. Phys. 17 (1989) 295; V. Pasquier and H. Saleur, Nucl. Phys. (1990); G. Keller, Lett. Math. Phys. 21 (1991) 273.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. D.V. Boulatov, Int. J. Mod. Phys. A8 (1993) 3139.

    MathSciNet  ADS  Google Scholar 

  18. V.G. Turaev, C.R. Acad. Sci. Paris 313 (1991) 395; J. Diff. Geom. 36 (1992) 35.

    MathSciNet  MATH  Google Scholar 

  19. T. Kohno, Topology 31 (1992) 203.

    Article  MathSciNet  MATH  Google Scholar 

  20. D.V. Boulatov, Mod. Phys. Lett. A7 (1992) 1629.

    MathSciNet  ADS  Google Scholar 

  21. H. Ooguri, Prog. Theor. Phys. 89 (1993) 1.

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Boulatov, D. (1995). 3D Gravity and Gauge Theories. In: Baulieu, L., Dotsenko, V., Kazakov, V., Windey, P. (eds) Quantum Field Theory and String Theory. NATO ASI Series, vol 328. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1819-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1819-8_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5735-3

  • Online ISBN: 978-1-4615-1819-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics