Canonical Construction of Liouville Field Operators with Arbitrary Spin

  • Jens Schnittger
Part of the NATO ASI Series book series (NSSB, volume 328)


These notes contain an account of some recent work by J.-L. Gervais and the author on the operator approach to Liouville theory. In the last section the author presents some qualitative reasoning concerning the structure of the three-point function.


Quantum Group Vertex Operator Free Field Orthogonality Relation Liouville Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    O. Babelon, Phys. Lett. B215 (1988) 523.MathSciNetADSGoogle Scholar
  2. [2] J.-L. Gervais, Comm. Math. Phys. 130 (257) (1990).MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. [3]
    J.-L. Gervais, Phys. Lett. B243 (85) (1990).MathSciNetADSGoogle Scholar
  4. [4]
    E. Cremmer, J.-L. Gervais, Comm. Math. Phys. 144 (279) (1992).MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. [5]
    J.-L. Gervais, Int. J. Mod. Phys. 6 (2805) (1991),.MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    J.-L. Gervais, Comm. Math. Phys. 138 (301) (1991).MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. [7]
    J.-L. Gervais, “Quantum group derivation of 2D gravity-matter coupling” Invited talk at the Stony Brook meeting String and Symmetry 1991, LPTENS preprint 91/22, Nucl. Phys. B391 (287) (1993).Google Scholar
  8. [8]
    E. Cremmer, J.-L. Gervais, J.-F. Roussel, “The quantum group structure of 2D gravity and minimal models II: The genus-zero chiral bootstrap” LPTENS preprint 93/02, hep-th9302035.Google Scholar
  9. [9]
    E. Braaten, T. Curtright, C. Thorn, Phys. Lett. B118 (1982) 115; Phys. Rev. Lett. 48 (1982) 1309; Ann. Phys. (N.Y.) 147 (1983) 365; E. Braaten, T. Curtright, G. Ghandour, C. Thorn, Phys. Rev. Lett. 51 (1983) 19; Ann. Phys. (N.Y.) 153 (1984) 147.MathSciNetADSGoogle Scholar
  10. [10]
    H.J. Otto, G. Weigt, Phys. Lett. B159 (1985) 341; Z. Phys. C31, (1986) 219; G. Weigt, “Critical exponents of conformai fields coupled to two-dimensional quantum gravity in the conformai gauge”, talk given at 1989 Karpacz Winter School of Theor. Physics, preprint PHE-90-15; G. Weigt, “Canonical quantization of the Liouville theory, quantum group structures, and correlation functions”, talk given at 1992 Johns Hopkins Workshop on Current Problems in Particle Theory, Goteborg, Sweden, hep-th 9208075, print-92-0383 (DESY-IFH).MathSciNetADSGoogle Scholar
  11. [11]
    J.-L. Gervais, A. Neveu, Nucl. Phys. B238 (1984) 125; Nucl. Phys. B238 (1984) 396.MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    J.-L. Gervais, B. Rostand, Nucl. Phys. B346 (473) (1990).Google Scholar
  13. [13]
    J.-L. Gervais, B. Rostand, Comm. Math. Phys. 143 (175) (1991).Google Scholar
  14. [14]
    F. Smirnoff, L. Takhtajan, “Towards a Quantum Liouville Theory with c > 1”, Kyoto University, Yukawa Institute Library April 1990.Google Scholar
  15. [15]
    J.-L. Gervais, A. Neveu, Nucl. Phys. B224 (329) (1983).Google Scholar
  16. [16]
    L. Johannson, A. Kihlberg, R. Marnelius, Phys. Rev. D 29 (1984) 2798; L. Johannson, R. Marnelius, Nucl. Phys. B254 (1985) 201.MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    D. Lüst, J. Schnittger, Int. J. Mod. Phys. A6 (1991) 3625; J. Schnittger, Ph.D. thesis, Munich 1990.ADSGoogle Scholar
  18. [18]
    J.-L. Gervais, J. Schnittger, Phys. Lett. B315 (1993) 258.MathSciNetADSGoogle Scholar
  19. [19]
    G. Felder, J. Fröhlich, J. Keller, Comm. Math. Phys. 124 (1989) 646.ADSGoogle Scholar
  20. [20]
    A. Kirilov, N. Reshetikhin, Infinite Dimensional Lie Algebras and Groups, Advanced Study in Mathematical Physics vol. 7, Proceedings of the 1988 Marseille Conference, V. Kac editor, p. 285, World scientific.Google Scholar
  21. [21]
    Bo-yu Hou, Bo-yuan Hou, Zhong-qi Ma, Comm. Theor. Phys., 13, 181, (1990); Comm. Theor. Phys., 13, 1990, 341.Google Scholar
  22. [22]
    J.F. Roussel, private communication.Google Scholar
  23. [23]
    G. Andrews “q-series: their development and application in analysis, number theory, combinatorics, physics, and computer algebra”, Conference board of the Mathematical Sciences, Regional Conference in Mathematics, # 66, A.M.S. ed.Google Scholar
  24. [24]
    L.C. Slater, “Generalized hypergeometric functions” Cambridge University presss 1966.Google Scholar
  25. [25]
    R. Askey, J. Wilson, “A set of orthogonal polynomials that generalize the Racah coefficients or 6-j symbols” SIAM J. Math. Anal. 10 (1979) 10MathSciNetzbMATHCrossRefGoogle Scholar
  26. [26]
    Vl. Dotsenko, V. Fateev, Nucl. Phys. B251 (691) (1985).Google Scholar
  27. [27]
    J.-L. Gervais, J. Schnittger, “Canonical Construction of Liouville Field Operators with Arbitrary Spin” LPTENS preprint 93/.Google Scholar
  28. [28]
    J.-L. Gervais, J. Schnittger, “The Many Faces of the Quantum Liouville Exponentials”, LPTENS preprint 93/30, hep-th 9308134, Nucl. Phys. B to appear.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Jens Schnittger
    • 1
  1. 1.Laboratoire de Physique Théorique de l’École Normale SupérieureParis Cedex 05France

Personalised recommendations