Skip to main content

Lattice Models and N = 2 Supersymmetry

  • Chapter
Book cover Quantum Field Theory and String Theory

Part of the book series: NATO ASI Series ((NSSB,volume 328))

  • 456 Accesses

Abstract

We review the construction of exactly solvable lattice models whose continuum limits are N = 2 supersymmetric models. Both critical and off-critical models are discussed. The approach we take is to first find lattice models with natural topological sectors, and then identify the continuum limits of these sectors with topologically twisted N = 2 supersymmetric field theories. From this, we then describe how to recover the complete lattice versions of the N = 2 supersymmetric field theories. We discuss a number of simple physical examples and we describe how to construct a broad class of models. We also give a brief review of the scattering matrices for the excitations of these models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Martinec, “Criticality, catastrophes and compactifications,” in the V.G. Knizhnik memorial volume, L. Brink et al. (editors): “Physics and mathematics of strings.”.

    Google Scholar 

  2. N.P. Warner, Lectures on N = 2 superconformai theories and singularity theory”, in “Superstrings ′89,” proceedings of the Trieste Spring School, 3–14 April 1989. Editors: M. Green, R. Iengo, S. Randjbar-Daemi, E. Sezgin and A. Strominger. World Scientific (1990); “N = 2 Super symmetric Integrable Models and Topological Field Theories,” Lectures given at the Summer School on High Energy Physics and Cosmology, Trieste, Italy, June 15th–July 3rd, 1992. To appear in the proceedings.

    Google Scholar 

  3. C. Vafa, Lectures given at the Summer School on High Energy Physics and Cosmology, Trieste, Italy, June 15th–July 3rd, 1992. To appear in the proceedings.

    Google Scholar 

  4. E. Martinec, Phys. Lett. 217B (1989) 431; C. Vafa and N.P. Warner, Phys. Lett. 218B (1989) 51.

    MathSciNet  ADS  Google Scholar 

  5. W. Lerche, C. Vafa and N.P. Warner, Nucl. Phys. B324 (1989) 427.

    Article  MathSciNet  ADS  Google Scholar 

  6. A. Cappelli, C. Itzykson and J.B. Zuber, Nucl. Phys. B280 (1987) 445.

    Article  MathSciNet  ADS  Google Scholar 

  7. E. Witten, Nucl. Phys. B403 (1993) 159; “On the Landau-Ginzburg description of N = 2 minimal models,” IASSNS-HEP-93-10, hep-th/9304026.

    Article  MathSciNet  ADS  Google Scholar 

  8. P. di Francesco, O. Aharony and S. Yankielowicz, “Elliptic Genera and the Landau-Ginzburg approach to N = 2 orbifolds,” SACLAY-SPHT-93-068, hep-th/9306157.

    Google Scholar 

  9. T. Kawai, Y. Yamada and S.-K. Yang, “Elliptic genera and N = 2 superconformai field theory,” KEK-TH-362, hep-th/9306096.

    Google Scholar 

  10. M. Henningson, “N = 2 gauged WZW models and the elliptic genus,” IASSNS-HEP-93-39, hep-th/9307040.

    Google Scholar 

  11. P. Fendley, S. Mathur, C. Vafa and N.P. Warner, Phys. Lett. 243B (1990) 257.

    MathSciNet  ADS  Google Scholar 

  12. P. Fendley and K. Intriligator, Nucl. Phys. B372 (1992) 533; Nucl. Phys. B380 (1992) 265.

    Article  MathSciNet  ADS  Google Scholar 

  13. A. LeClair, D. Nemeschansky and N.P. Warner Nucl. Phys. B390 (1993) 653.

    Article  MathSciNet  ADS  Google Scholar 

  14. S. Cecotti and C. Vafa, Nucl. Phys. 367 (1991) 359.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. S. Cecotti, P. Fendley, K. Intriligator and C. Vafa, Nucl. Phys. B386 (1992) 405.

    Article  MathSciNet  ADS  Google Scholar 

  16. V. Pasquier, Nucl. Phys. B295 (1988) 491.

    Article  MathSciNet  ADS  Google Scholar 

  17. V. Pasquier and H. Saleur, Nucl. Phys. B330 (1990) 523.

    Article  MathSciNet  ADS  Google Scholar 

  18. B. Nienhuis, J. Stat. Phys. 34 (1984) 731.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. [19] P. diFrancseco, H. Saleur and J.-B. Zuber, J. Stat. Phys. 49 (1987) 57.

    Article  ADS  Google Scholar 

  20. P. DiFrancesco, H. Saleur and J.-B. Zuber, Nucl. Phys. B285 (1987) 454; Nucl. Phys. B300 (1988) 393; I. Rostov, Nucl. Phys. B300 (1988) 559. J.-B. Zuber, “Conformai Field Theories, Coulomb Gas Picture and Integrable models”, in Fields, Strings and Critical Phenomena, editors E. Brézin and J. Zinn-Justin, Les Houches 1988 Session XLIX.

    Article  MathSciNet  ADS  Google Scholar 

  21. E. Date, M. Jimbo, T. Miwa and M. Okada, Phys. Rev. B35 (1987) 2105.

    ADS  Google Scholar 

  22. D. Friedan, Z. Qiu and S. Shenker, Phys. Lett. 151B (1984) 1575.

    Article  Google Scholar 

  23. D. Kastor, E. Martinec and S. Shenker, Nucl. Phys. B316 (1989) 590.

    Article  MathSciNet  ADS  Google Scholar 

  24. Z. Qiu, Nucl. Phys. B270 (1986) 205.

    Article  ADS  Google Scholar 

  25. O. Foda, Nucl. Phys. B300 (1988) 611.

    Article  MathSciNet  ADS  Google Scholar 

  26. S.K. Yang, Nucl. Phys. B285 (1987) 183.

    Article  ADS  Google Scholar 

  27. S.K. Yang and H.B. Zheng, Nucl. Phys. B285 (1987) 410.

    Article  MathSciNet  ADS  Google Scholar 

  28. M. Baake and G. vonGehlen, V. Rittenberg, J. Phys. A20 (1987) L479; J. Phys. A20 (1987) L487.

    MathSciNet  ADS  Google Scholar 

  29. P. diFrancesco, H. Saleur and J.-B. Zuber, Nucl. Phys. B300 (1988) 393.

    Article  MathSciNet  ADS  Google Scholar 

  30. S.-K. Yang, Phys. Lett. B209 (1988) 242.

    ADS  Google Scholar 

  31. H. Saleur, Nucl. Phys. B382 (1992) 486, 532.

    Article  MathSciNet  ADS  Google Scholar 

  32. A.G. Izergin and V.E. Korepin, Commun. Math. Phys. 79 (1981) 303.

    Article  MathSciNet  ADS  Google Scholar 

  33. S.O. Warnaar, M.T. Batchelor and B. Nienhuis, J. Phys. A25 (1992) 3077.

    MathSciNet  ADS  Google Scholar 

  34. P. Fendley and H. Saleur, Nucl. Phys. B388 (1992) 609.

    Article  MathSciNet  ADS  Google Scholar 

  35. C. Gomez and G. Sierra, “Spin anisotropy commensurable chains: quantum group symmetries and N = 2 Susy,” Nucl. Phys. B, to appear.

    Google Scholar 

  36. Z. Maassarani, D. Nemeschansky and N.P. Warner, Nucl. Phys. B393 (1993) 523.

    Article  MathSciNet  ADS  Google Scholar 

  37. Z. Maassarani, “Conformai Weights via Bethe Ansatz for N = 2 Superconformal Theories,” USC preprint USC-93/019.

    Google Scholar 

  38. D. Nemeschansky.and N.P. Warner, “Off-Critical Lattice Analogues of N = 2 Supersymmetric Quantum Integrable Models,” preprint USC-93/018, to appear in Nucl. Phys. B.

    Google Scholar 

  39. P. Kasteleyn and C. Fortuin, J. Phys. Soc. Japan Suppl. 26 (1969) 11.

    ADS  Google Scholar 

  40. H.W.J. Blote and M.P.M. Nightingale, Physica 112A (1982) 405.

    MathSciNet  ADS  Google Scholar 

  41. R.J. Baxter, “Exactly solved models in statistical mechanics,” Academic Press, London 1982.

    MATH  Google Scholar 

  42. P. Martin, “Potts models,” World Scientific.

    Google Scholar 

  43. P. Martin and H. Saleur, “The blob algebra and the periodic Temperley-Lieb algebra”, preprint USC-93-009, to appear in Lett. Math. Phys..

    Google Scholar 

  44. G. Felder, Nucl. Phys. B317 (1989), 215.

    Article  MathSciNet  ADS  Google Scholar 

  45. L.P. Kadanoff and A.C. Brown, Ann. Phys. 121 (1979) 318.

    Article  ADS  Google Scholar 

  46. V. Pasquier, Commun. Math. Phys. 118 (1988) 335.

    Article  MathSciNet  ADS  Google Scholar 

  47. H. Saleur and J.-B. Zuber, “Integrable Lattice Models and Quantum Groups,” in the proceedings of the 1990 Trieste Spring School on String Theory and Quantum Gravity.

    Google Scholar 

  48. G.E. Andrews, R.J. Baxter and P.J. Forrester, J. Stat. Phys. 35 (1984) 193.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  49. A. Kuniba and T. Yajima, J. Stat. Phys. 52 (1987) 829; P. Ginsparg, Nucl. Phys. B295 (1988) 153; P.A. Pierce and K. Seaton, Ann. Phys. 193 (1989) 326; P.A. Pierce and M.T. Batchelor, J. Stat. Phys. 60 (1990) 77.

    Article  MathSciNet  ADS  Google Scholar 

  50. P. Mathieu and M.A. Walton Phys. Lett. 254B (1991) 106.

    MathSciNet  ADS  Google Scholar 

  51. W. Lerche and N.P. Warner, Nucl. Phys. B358 (1991) 571.

    Article  MathSciNet  ADS  Google Scholar 

  52. M.T. Grisaru, S. Penati and D. Zanon, Phys. Lett. 253B (1991) 357; G.W. Delius, M.T. Grisaru, S. Penati and D. Zanon, Phys. Lett. 256B (1991) 164; Nucl. Phys. B359 (1991) 125.

    MathSciNet  ADS  Google Scholar 

  53. J. Evans and T.J. Hollowood Nucl. Phys. B352 (1991) 723; Nucl. Phys. B382 (1992) 662; Phys. Lett. 293B (1992) 100.

    Article  MathSciNet  ADS  Google Scholar 

  54. G. Felder and A. LeClair, Int. J. Mod. Phys. A7 (1992) 239.

    MathSciNet  ADS  Google Scholar 

  55. F. M. Goodman, P. de la Harpe, V. F. R. Jones, “Coxeter graphs and towers of algebras”, MSRI Publications number 14, Springer Verlag, and references therein.

    Google Scholar 

  56. W.M. Koo and H. Saleur, “Representations of the Virasoro algebra from lattice models,” preprint USC-93-025.

    Google Scholar 

  57. M. Takahashi and M. Suzuki, Prog.Th.Phys. 48 (1972) 2187.

    Article  ADS  Google Scholar 

  58. Al.B. Zamolodchikov, Nucl. Phys. B366 (1991) 122; Nucl. Phys. B358 (1991) 524.

    Article  MathSciNet  ADS  Google Scholar 

  59. N. Yu Reshetikhin and H. Saleur, “Lattice regularization of massive and massless integrable field theories”, preprint USC-93/-20.

    Google Scholar 

  60. L.D. Faddeev and L.A. Takhtajan, Phys.Lett. A85 (1981) 375.

    MathSciNet  ADS  Google Scholar 

  61. P. Fendley and H. Saleur, “Massless integrable QFT and massless scattering in 1 + 1 dimensions,” preprint USC-93-022.

    Google Scholar 

  62. P.G. deGennes, “Scaling concepts in polymer physics”, Cornell University Press.

    Google Scholar 

  63. P. Fendley, H. Saleur and Al.B. Zamolodchikov, “Massless flows I: the sine-Gordon and O(n) models” and “Massless flows II: the exact S-matrix approach”, Int. J. Mod. Phys. A, to appear.

    Google Scholar 

  64. M. Jimbo, T. Miwa and M. Okado, Commun. Math. Phys. 116 (1988) 507.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  65. B. Duplantier and H. Saleur, Nucl. Phys. B290 (1987) 291.

    Article  MathSciNet  ADS  Google Scholar 

  66. Y. Kazama and H. Suzuki, Nucl. Phys. B234 (1989) 73.

    MathSciNet  Google Scholar 

  67. D. Nemeschansky and N.P. Warner, Nucl. Phys. B380 (1992) 241.

    Article  MathSciNet  ADS  Google Scholar 

  68. P. Fendley, W. Lerche, S.D. Mathur and N.P. Warner, Nucl. Phys. B348 (1991) 66.

    Article  MathSciNet  ADS  Google Scholar 

  69. E. Witten, Commun. Math. Phys. 117 (1988) 353; Commun. Math. Phys. 118 (1988) 411; Nucl. Phys. B340 (1990) 281.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  70. T. Eguchi and S.-K. Yang, Mod. Phys. Lett. A4 (1990) 1693.

    MathSciNet  ADS  Google Scholar 

  71. T. Miwa, M. Jimbo and M. Okado, “Symmetric tensors of the family,” Kyoto preprint (1987), in Algebraic Analysis, Festschrift for M. Sato’s 60th birthday, Academic Press (1988).

    Google Scholar 

  72. M.P. Richey and C.A. Tracy, J. Stat. Phys. 42 (1986) 311.

    Article  MathSciNet  ADS  Google Scholar 

  73. E. Date, M. Jimbo, A. Kuniba, T. Miwa and M. Okado, Advanced Studies in Pure Mathematics, 16 (1988) 17.

    MathSciNet  Google Scholar 

  74. T.R. Klassen and E. Melzer, Nucl. Phys. B338 (1990) 485.

    Article  MathSciNet  ADS  Google Scholar 

  75. D. Bernard and A. LeClair, Phys. Lett. 247 (1990) 309; C. Ahn, D. Bernard, and A. LeClair, Nucl. Phys. B346 (1990) 409; D. Bernard and A. LeClair, Commun. Math. Phys. 142 (1991) 99.

    MathSciNet  Google Scholar 

  76. T. Hollowood, “A Quantum Group Approach to Constructing Factorizable S-Matrices,” Oxford Preprint OUTP-90-15P, June 1990.

    Google Scholar 

  77. T. Nakatsu, Nucl. Phys. B356 (1991) 499; H.J. de Vega and V.A. Fateev, Int. J. Mod. Phys. A6 (1991) 3221.

    Article  MathSciNet  ADS  Google Scholar 

  78. P. Christe and G. Mussardo, Nucl. Phys. B330 (1990) 465; Int. J. Mod. Phys. A5 (1990) 4581; G. Mussardo, Int. J. Mod. Phys. B6 (1992) 2061.

    Article  MathSciNet  ADS  Google Scholar 

  79. M. Karowski and H. J. Thun, Nucl. Phys. B190 (1981) 61; E. Ogievetsky and P. Wiegmann, Phys. Lett. 168 (1986), 360; E. Ogievetsky, N. Yu. Reshetikhin and P. Wiegmann, Nucl. Phys. B280 (1987) 45.

    Article  MathSciNet  ADS  Google Scholar 

  80. V.V. Bazhanov, N. Yu. Reshetikhin, Progress in Theor. Phys. 102 (1990) 301.

    Article  MathSciNet  ADS  Google Scholar 

  81. C. Gomez and G. Sierra, “On the integrability of N = 2 Landau-Ginzburg models: a graph generalization of the Yang-Baxter equation,” CERN preprint TH-6963/93, hep-th/9309007.

    Google Scholar 

  82. D. Nemeschansky and N.P. Warner, in preparation.

    Google Scholar 

  83. M. Jimbo, K. Miki, T. Miwa and A. Nakayashiki, “Correlation functions of the XXZ-model for Δ <-1,” kyoto PRINT-92-0191, hep-th/9205055; M. Jimbo, T. Miwa and A. Nakayashiki, J. Phys. A26 (1993) 2199; O. Foda, M. Jimbo, T. Miwa, K. Miki and A. Nakayashiki, “Vertex operators in solvable lattice models,” RIMS-922, hep-th/9305100; M. Jimbo, T. Kojima, T. Miwa, Y.-H. Quano, “Smirnov’s integrals and quantum Knizhnik-Zamolodchikov equation of level 0,” RIMS-945, hep-th/9309118.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Saleur, H., Warner, N.P. (1995). Lattice Models and N = 2 Supersymmetry. In: Baulieu, L., Dotsenko, V., Kazakov, V., Windey, P. (eds) Quantum Field Theory and String Theory. NATO ASI Series, vol 328. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1819-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1819-8_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5735-3

  • Online ISBN: 978-1-4615-1819-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics