Advertisement

A One Dimensional Ideal Gas of Spinons, or Some Exact Results on the XXX Spin Chain with Long Range Interaction

  • D. Bernard
  • V. Pasquier
  • D. Serban
Part of the NATO ASI Series book series (NSSB, volume 328)

Abstract

We describe a few properties of the XXX spin chain with long range interaction. The plan of these notes is:
  1. 1

    — The Hamiltonian.

     
  2. 2

    — Symmetry of the model.

     
  3. 3

    — The irreducible multiplets.

     
  4. 4

    — The spectrum.

     
  5. 5

    — Wave functions and statistics.

     
  6. 6

    — The spinon description.

     
  7. 7

    — The thermodynamics.

     

Keywords

Transfer Matrix Spin Chain High Weight Vector Elementary Motif Spin Half 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    F.D. Haidane, Phys.Rev.Lett. 60 (1988) 635.ADSCrossRefGoogle Scholar
  2. [2]
    B.S. Shastry, Phys.Rev.Lett. 60 (1988) 639.ADSCrossRefGoogle Scholar
  3. [3]
    F.D. Haidane, Phys.Rev.Lett. 66 (1991) 1529.MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    E. Date, M. Jimbo, A. Kuniba, T. Miwa and M. Okado, Lett. Math. Phys. 17 (1989) 69.MathSciNetADSMATHCrossRefGoogle Scholar
  5. [5]
    F.D. Haidane, Z.N. Ha, J.C. Talstra, D. Bernard and V. Pasquier, Phys.Rev.Lett. 69 (1992) 2021.MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    V.G. Drinfel’d, “Quantum Groups.”, Proc. of the ICM, Berkeley (1987) 798.Google Scholar
  7. [7]
    E.K. Sklyanin, Funct. Anal. Appl. 16 (1983) 263.MATHCrossRefGoogle Scholar
  8. [8]
    D. Bernard, M. Gaudin, F.D. Haidane and V. Pasquier, J. Phys. A., to be published.Google Scholar
  9. [9]
    A.G. Izergin and V. Korepin, Sov.Phys.Dokl. 26 (1981) 653.ADSGoogle Scholar
  10. [10]
    E.M. Opdam, Invent. Math. 98 (1989) 1; G.J. Heckman, Invent. Math. 103 (1991) 341.MathSciNetADSMATHCrossRefGoogle Scholar
  11. [11]
    A.P. Polychronakos, Phys.Rev.Lett. 69 (1992) 703.MathSciNetADSMATHCrossRefGoogle Scholar
  12. [12]
    I. Cherednik, Invent. Math. 106 (1991) 411; and Publ. RIMS 27 (1991) 727; and reference therin.MathSciNetADSMATHCrossRefGoogle Scholar
  13. [13]
    O. Chalykh and A. Veselov, Comm. Math. Phys. 152 (1993) 29.MathSciNetADSMATHCrossRefGoogle Scholar
  14. [14]
    F.D. Haidane, Phys.Rev.Lett. 67 (1991) 937.MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    H.W. Blöte, J.L. Cardy, and Nightingale, Phys.Rev.Lett. 56 (1986) 742; I. Affleck, Phys.Rev.Lett. 56 (1986) 746.ADSCrossRefGoogle Scholar
  16. [16]
    C.N. Yang and C.P. Yang, Phys.Rev. 10 (1969) 1115.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • D. Bernard
    • 1
  • V. Pasquier
    • 1
  • D. Serban
    • 1
  1. 1.Service de Physique Théorique de SaclayGif-sur-YvetteFrance

Personalised recommendations