Advertisement

The Two-Dimensional String as a Topological Field Theory

  • Sunil Mukhi
Part of the NATO ASI Series book series (NSSB, volume 328)

Abstract

A certain topological field theory is shown to be equivalent to the compactified c = 1 string. This theory is described in both Landau-Ginzburg and Kazama-Suzuki formulations. The genus-g partition function and genus-0 multi-tachyon correlators of the c = 1 string are shown to be calculable in this approach. The KPZ formulation of non-critical string theory has a natural relation to this topological model.

Keywords

Central Charge Bosonic String Ghost Number Topological Algebra Coset Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Mukhi and C. Vafa, Nucl. Phys. B407 (1993) 667.MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    D. Ghoshal and S. Mukhi, in preparation.Google Scholar
  3. [3]
    K.S. Narain, Phys. Lett. 169B (1986) 41.MathSciNetADSGoogle Scholar
  4. [4]
    E. Witten, Nucl. Phys. B373 (1992) 187.MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    E. Witten and B. Zwiebach, Nucl. Phys. B377 (1992) 55.MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    I. Klebanov and A.M. Polyakov, Mod. Phys. Lett. A6 (1991) 3273.MathSciNetADSGoogle Scholar
  7. [7]
    D. Gross and I. Klebanov, Nucl. Phys. B344 (1990) 475.MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    P. DiFrancesco and D. Kutasov, Phys. Lett. 261B (1991) 385.MathSciNetADSGoogle Scholar
  9. [9]
    V. Dotsenko, Mod. Phys. Lett. A6 (1991) 3601.MathSciNetADSGoogle Scholar
  10. [10]
    Y. Kitazawa, Phys. Lett. 265B (1991) 262.MathSciNetADSGoogle Scholar
  11. [11]
    D. Ghoshal and S. Mahapatra, Mod. Phys. Lett. A8 (1993) 197.MathSciNetADSGoogle Scholar
  12. [12]
    S. Govindarajan, T. Jayaraman, V. John and P. Majumdar, Phys. Rev. D48 (1993) 839.ADSGoogle Scholar
  13. [13]
    B. Gato-Rivera and A. Semikhatov, Phys. Lett. 288B (1992) 38.MathSciNetADSGoogle Scholar
  14. [14]
    M. Bershadsky, W. Lerche, D. Nemeschansky and N. Warner, Nucl. Phys. B401 (1993) 304.MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    S. Mukherji, S. Mukhi and A. Sen, Phys. Lett. 266B (1991) 337.MathSciNetADSGoogle Scholar
  16. [16]
    P. Bouwknegt, J. McCarthy and K. Pilch, Comm. Math. Phys. 145 (1992) 541.MathSciNetADSMATHCrossRefGoogle Scholar
  17. [17]
    B. Lian and G. Zuckerman, Phys. Lett. 266B (1991) 21.MathSciNetADSGoogle Scholar
  18. [18]
    M. Kato and S. Matsuda, in “Conformai Field Theory and Solvable Lattice Models”, Adv. Studies in Pure Math. 16, Ed. M. Jimbo, T. Miwa and A. Tsuchiya (Kinokuniya, 1988).Google Scholar
  19. [19]
    D. Gross, I. Klebanov and M. Newman, Nucl. Phys. B350 (1991) 621.MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    M. Bershadsky and I. Klebanov, Phys. Rev. Lett. 65 (1990) 3088.ADSCrossRefGoogle Scholar
  21. [21]
    A.M. Polyakov, Mod. Phys. Lett. A6 (1991) 635.MathSciNetADSGoogle Scholar
  22. [22]
    V. Knizhnik, A.M. Polyakov and A.B. Zamolodchikov, Mod. Phys. Lett. A3 (1988) 819.MathSciNetADSGoogle Scholar
  23. [23]
    F. David, Mod. Phys. Lett. A3 (1988) 1651; J. Distler and H. Kawai, Nucl. Phys. B321 (1989) 509.ADSGoogle Scholar
  24. [24]
    Y. Kazama and H. Suzuki, Nucl. Phys. B321 (1989) 232.MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    K. Gawedzki and A. Kupiainen, Nucl. Phys. B320 (1989) 625.MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    A. Alekseev and S. Shatashvili, Nucl. Phys. B323 (1989) 625; M. Bershadsky and H. Ooguri, Comm. Math. Phys. 126 (1989) 49.MathSciNetGoogle Scholar
  27. [27]
    R. Dijkgraaf, E. Verlinde and H. Verlinde, Nucl. Phys. B371 (1992) 269.MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    V. Sadov, as quoted in Ref.[1].Google Scholar
  29. [29]
    K. Li, Nucl. Phys. B354 (1991) 711.ADSCrossRefGoogle Scholar
  30. [30]
    W. Lerche, C. Vafa and N. Warner, Nucl. Phys. B324 (1989) 427.MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    R. Dijkgraaf, E. Verlinde and H. Verlinde, Nucl. Phys. B352 (1991) 59.MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    A. Losev, ITEP Preprint PRINT-92-0563 (Jan 1993), hep-th/9211089.Google Scholar
  33. [33]
    S. Cecotti and C. Vafa, as quoted in Ref.[1].Google Scholar
  34. [34]
    G. Moore, Nucl. Phys. B368 (1992) 557; G. Mandai, A. Sengupta and S. Wadia, Mod. Phys. Lett. A6 (1991) 1465; K. Demeterfi, A. Jevicki and J. Rodrigues, Nucl. Phys. B362 (1991) 173; J. Polchinski, Nucl. Phys. B362 (1991) 125.ADSCrossRefGoogle Scholar
  35. [35]
    E. Witten, Nucl. Phys. B371 (1992) 191.MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    J. Harer and D. Zagier, Invent. Math. 185 (1986) 457.MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    R.C. Penner, Commun. Math. Phys. 113 (1987) 299; J. Diff. Geom. 27 (1988) 35.MathSciNetADSMATHCrossRefGoogle Scholar
  38. [38]
    J. Distler and C. Vafa, Mod. Phys. Lett. A6 (1991) 259.MathSciNetADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Sunil Mukhi
    • 1
  1. 1.Tata Institute of Fundamental ResearchBombayIndia

Personalised recommendations