The Two-Dimensional String as a Topological Field Theory

  • Sunil Mukhi
Part of the NATO ASI Series book series (NSSB, volume 328)

Abstract

A certain topological field theory is shown to be equivalent to the compactified c = 1 string. This theory is described in both Landau-Ginzburg and Kazama-Suzuki formulations. The genus-g partition function and genus-0 multi-tachyon correlators of the c = 1 string are shown to be calculable in this approach. The KPZ formulation of non-critical string theory has a natural relation to this topological model.

Keywords

Manifold Ghost Topo Kato 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Mukhi and C. Vafa, Nucl. Phys. B407 (1993) 667.MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    D. Ghoshal and S. Mukhi, in preparation.Google Scholar
  3. [3]
    K.S. Narain, Phys. Lett. 169B (1986) 41.MathSciNetADSGoogle Scholar
  4. [4]
    E. Witten, Nucl. Phys. B373 (1992) 187.MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    E. Witten and B. Zwiebach, Nucl. Phys. B377 (1992) 55.MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    I. Klebanov and A.M. Polyakov, Mod. Phys. Lett. A6 (1991) 3273.MathSciNetADSGoogle Scholar
  7. [7]
    D. Gross and I. Klebanov, Nucl. Phys. B344 (1990) 475.MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    P. DiFrancesco and D. Kutasov, Phys. Lett. 261B (1991) 385.MathSciNetADSGoogle Scholar
  9. [9]
    V. Dotsenko, Mod. Phys. Lett. A6 (1991) 3601.MathSciNetADSGoogle Scholar
  10. [10]
    Y. Kitazawa, Phys. Lett. 265B (1991) 262.MathSciNetADSGoogle Scholar
  11. [11]
    D. Ghoshal and S. Mahapatra, Mod. Phys. Lett. A8 (1993) 197.MathSciNetADSGoogle Scholar
  12. [12]
    S. Govindarajan, T. Jayaraman, V. John and P. Majumdar, Phys. Rev. D48 (1993) 839.ADSGoogle Scholar
  13. [13]
    B. Gato-Rivera and A. Semikhatov, Phys. Lett. 288B (1992) 38.MathSciNetADSGoogle Scholar
  14. [14]
    M. Bershadsky, W. Lerche, D. Nemeschansky and N. Warner, Nucl. Phys. B401 (1993) 304.MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    S. Mukherji, S. Mukhi and A. Sen, Phys. Lett. 266B (1991) 337.MathSciNetADSGoogle Scholar
  16. [16]
    P. Bouwknegt, J. McCarthy and K. Pilch, Comm. Math. Phys. 145 (1992) 541.MathSciNetADSMATHCrossRefGoogle Scholar
  17. [17]
    B. Lian and G. Zuckerman, Phys. Lett. 266B (1991) 21.MathSciNetADSGoogle Scholar
  18. [18]
    M. Kato and S. Matsuda, in “Conformai Field Theory and Solvable Lattice Models”, Adv. Studies in Pure Math. 16, Ed. M. Jimbo, T. Miwa and A. Tsuchiya (Kinokuniya, 1988).Google Scholar
  19. [19]
    D. Gross, I. Klebanov and M. Newman, Nucl. Phys. B350 (1991) 621.MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    M. Bershadsky and I. Klebanov, Phys. Rev. Lett. 65 (1990) 3088.ADSCrossRefGoogle Scholar
  21. [21]
    A.M. Polyakov, Mod. Phys. Lett. A6 (1991) 635.MathSciNetADSGoogle Scholar
  22. [22]
    V. Knizhnik, A.M. Polyakov and A.B. Zamolodchikov, Mod. Phys. Lett. A3 (1988) 819.MathSciNetADSGoogle Scholar
  23. [23]
    F. David, Mod. Phys. Lett. A3 (1988) 1651; J. Distler and H. Kawai, Nucl. Phys. B321 (1989) 509.ADSGoogle Scholar
  24. [24]
    Y. Kazama and H. Suzuki, Nucl. Phys. B321 (1989) 232.MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    K. Gawedzki and A. Kupiainen, Nucl. Phys. B320 (1989) 625.MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    A. Alekseev and S. Shatashvili, Nucl. Phys. B323 (1989) 625; M. Bershadsky and H. Ooguri, Comm. Math. Phys. 126 (1989) 49.MathSciNetGoogle Scholar
  27. [27]
    R. Dijkgraaf, E. Verlinde and H. Verlinde, Nucl. Phys. B371 (1992) 269.MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    V. Sadov, as quoted in Ref.[1].Google Scholar
  29. [29]
    K. Li, Nucl. Phys. B354 (1991) 711.ADSCrossRefGoogle Scholar
  30. [30]
    W. Lerche, C. Vafa and N. Warner, Nucl. Phys. B324 (1989) 427.MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    R. Dijkgraaf, E. Verlinde and H. Verlinde, Nucl. Phys. B352 (1991) 59.MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    A. Losev, ITEP Preprint PRINT-92-0563 (Jan 1993), hep-th/9211089.Google Scholar
  33. [33]
    S. Cecotti and C. Vafa, as quoted in Ref.[1].Google Scholar
  34. [34]
    G. Moore, Nucl. Phys. B368 (1992) 557; G. Mandai, A. Sengupta and S. Wadia, Mod. Phys. Lett. A6 (1991) 1465; K. Demeterfi, A. Jevicki and J. Rodrigues, Nucl. Phys. B362 (1991) 173; J. Polchinski, Nucl. Phys. B362 (1991) 125.ADSCrossRefGoogle Scholar
  35. [35]
    E. Witten, Nucl. Phys. B371 (1992) 191.MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    J. Harer and D. Zagier, Invent. Math. 185 (1986) 457.MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    R.C. Penner, Commun. Math. Phys. 113 (1987) 299; J. Diff. Geom. 27 (1988) 35.MathSciNetADSMATHCrossRefGoogle Scholar
  38. [38]
    J. Distler and C. Vafa, Mod. Phys. Lett. A6 (1991) 259.MathSciNetADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Sunil Mukhi
    • 1
  1. 1.Tata Institute of Fundamental ResearchBombayIndia

Personalised recommendations