Advertisement

Conformal Field Theory Techniques in Large N Yang-Mills Theory

  • Michael R. Douglas
Part of the NATO ASI Series book series (NSSB, volume 328)

Abstract

Following some motivating comments on large N two-dimensional Yang-Mills theory, we discuss techniques for large N group representation theory, using quantum mechanics on the group manifold U(N), its equivalence to a quasirelativistic two-dimensional free fermion theory, and bosonization. As applications, we compute the free energy for two-dimensional Yang-Mills theory on the torus to O(1/N 2), and an interesting approximation to the leading answer for the sphere. We discuss the question of whether the free energy for the torus has R → 1/R invariance.

Keywords

Modular Form Eisenstein Series Conformal Field Theory Young Tableau Group Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Jimbo and T. Miwa, in Integrable Systems in Statistical Mechanics, eds. G. M. D’Ariano, A. Montorsi and M. G. Rasetti, 1985; World Scientific, Singapore.Google Scholar
  2. [2]
    Loop Groups, A. Pressley and G. Segal, Oxford, 1986; most relevant to the present discussion are chapters 10 and 14.3. Bombay lectures on highest weight representations of infinite dimensional Lie algebras, V. G. Kac and A. K. Raina, World Scientific, 1987.Google Scholar
  3. [3]
    M. Stone, Phys. Rev. B42 (1990) 8399. A. Jevicki, Nucl. Phys. B376 (1992) 75. R. Dijkgraaf, G. Moore and R. Plesser, Nucl. Phys. B394 (1993) 356.ADSGoogle Scholar
  4. [4]
    A good review is by J. Polchinski, presented at the Symposium on Black Holes, Wormholes, Membranes and Superstrings, Houston, TX, Jan 16–18, 1992, hep-th/9210045.Google Scholar
  5. [5]
    V. A. Kazakov and I. K. Rostov, Nucl. Phys. B176 (1980) 199.ADSCrossRefGoogle Scholar
  6. [6]
    D. J. Gross and W. Taylor, Nucl. Phys. B400 (1993) 181 and Nucl. Phys. B403 (1993) 395.MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    I. K. Rostov, SACLAY-SPHT-93-050, June 1993. hep-th/9306110.Google Scholar
  8. [8]
    M. Bershadsky, S. Cecotti, H. Ooguri, and C. Vafa, Nucl. Phys. B405 (1993) 279.MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    R. Dijkgraaf and R. Rudd, unpublished.Google Scholar
  10. [10]
    See J. Ambjorn et. al., Nucl. Phys. B270 (1986) 457 and references there.MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    E. Brézin, C. Itzykson, G. Parisi and J.-B. Zuber, Comm. Math. Phys. 59 (1978) 35.MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. [12]
    Harish-Chandra, Amer. J. Math. 79 (1957) 87-120; for a nice pedagogical treatment which continues with non-compact groups see Non-Abelian Harmonic Analysis, R. Howe and E. C. Tan, Springer-Verlag, 1992.MathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    J. S. Dowker, J. Phys. A (1970) 451.Google Scholar
  14. [14]
    Compact Lie Groups and their Representations, D. P. Zelobenko, AMS translations vol. 40, AMS, 1973.Google Scholar
  15. [15]
    Statistical Field Theory, C. Itzykson and J.-M. Drouffe, Cambridge, 1989.Google Scholar
  16. [16]
    D. J. Gross and I. Rlebanov, Nucl. Phys. B352 (1990) 671; A. M. Sengupta and S. R. Wadia, Int. J. Mod. Phys. A6 (1991) 1961.ADSGoogle Scholar
  17. [17]
    S. R. Wadia, Phys. Lett. 93B (1980) 403.MathSciNetADSGoogle Scholar
  18. [18]
    J. A. Minahan and A. P. Polychronakos, Phys. Lett. B312 (1993) 155.MathSciNetADSGoogle Scholar
  19. [19]
    Introduction to Elliptic Curves and Modular Forms, N. Koblitz, Springer-Verlag, 1984. Table of Integrals, Series and Products, I. S. Gradshteyn and I. M. Ryzhik, Academic Press, 1980.Google Scholar
  20. [20]
    D. J. Gross and I. Klebanov, Nucl. Phys. B344 (1990) 475.MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, HUTP-93-A025, Sep. 1993. hep-th/9309140.Google Scholar
  22. [22]
    C. Vafa, private communication.Google Scholar
  23. [23]
    M. R. Douglas and V. A. Kazakov, to appear in Phys. Lett. B; see also Kazakov’s lecture in this volume.Google Scholar
  24. [24]
    J. A. Minahan and A. P. Polychronakos, CERN-TH-7016-93, Sept. 1993. hep-th/9309119. M. Caselle, A. D’Adda, L. Magnea, S. Panzeri, DFTT-50-93, Sept. 1993. hep-th/9309107.Google Scholar
  25. [25]
    D. J. Gross and E. Witten, Phys. Rev. D21 (1980) 446.ADSGoogle Scholar
  26. [26]
    J.-M. Daul and V. A. Kazakov, LPTENS-93-37, Oct. 1993. hep-th/9310165. D. V. Boulatov, NBI-HE-93-57, Oct. 1993. hep-th/9310041.Google Scholar
  27. [27]
    For a discussion of such modifications, see W.-D. Zhao, PUPT-1390, Mar. 1993, or upcoming work by M. R. Douglas, K. Li, and M. Staudacher.Google Scholar
  28. [28]
    M. R. Douglas, RU-93-13, NSF-ITP-93-39, Mar. 1993. hep-th/9303159.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Michael R. Douglas
    • 1
  1. 1.Dept. of Physics and AstronomyRutgers UniversityUSA

Personalised recommendations