Advertisement

Fractal Structure In 4D Gravity

  • I. Antoniadis
Part of the NATO ASI Series book series (NSSB, volume 328)

Abstract

We argue that classical general relativity is drastically modified at cosmological distance scales, due to the large quantum fluctuations of the conformai factor. The infrared dynamics is generated by an effective action induced by the trace anomaly, analogous to the Polyakov action in two dimensions, and it describes a scale invariant phase of quantum gravity in the far infrared. We derive scaling relations for the partition function and physical observables, which can in principle be tested in numerical simulations of simplicial four geometries with S 4 topology. In particular, we predict the form of the critical curve in the coupling constant plane, and determine the scaling of the Newtonian coupling with volume which permits a sensible continuum limit.

Keywords

Quantum Gravity Continuum Limit Conformal Factor Critical Curve Trace Anomaly 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L.H. Ford, Phys. Rev. D31 (1985) 710; I. Antoniadis, J. Iliopoulos, T.N. Tomaras, Phys. Rev. Lett. 56 (1986) 1319; B. Allen and M. Turyn, Nucl. Phys. B292 (1987) 813; E.G. Floratos, J. Iliopoulos, and T.N. Tomaras, Phys. Lett. B197 (1987) 373.ADSGoogle Scholar
  2. [2]
    I. Antoniadis and E. Mottola, Jour. Math. Phys. 32 (1991) 1037.MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. [3]
    A. M. Polyakov, Phys. Lett. B103 (1981) 207; V. G. Knizhnik, A. M. Polyakov, and A. B. Zamolodchikov, Mod. Phys. Lett. A3 (1988) 819.MathSciNetADSGoogle Scholar
  4. [4]
    F. David, Mod. Phys. Lett. A3 (1988) 1651; J. Distler and H. Kawai, Nucl. Phys. B321 (1989) 509.ADSGoogle Scholar
  5. [5]
    I. Antoniadis and E. Mottola, Phys. Rev. D45 (1992) 2013.MathSciNetADSGoogle Scholar
  6. [6]
    I. Antoniadis, P. O. Mazur and E. Mottola, Ecole Polytechnique preprint CPTH-A214.1292.Google Scholar
  7. [7]
    J. Ambjørn and J. Jurkiewicz, Phys. Lett. B278 (1992) 42; J. Ambjørn, Z. Burda, J. Jurkiewicz, and C. Kristjansen, Acta Phys. Polon. B23 (1992) 991; J. Ambjørn, J. Jurkiewicz, and C. Kristjansen, Nucl. Phys. B393 (1993) 601.ADSGoogle Scholar
  8. [8]
    M. E. Agishtein and A. A. Migdal, Mod. Phys. Lett. A7 (1992) 1039; Nucl. Phys. B385 (1992) 395.MathSciNetADSGoogle Scholar
  9. [9]
    I. Antoniadis, P. O. Mazur and E. Mottola, Nucl. Phys. B388 (1992) 627.MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    J. Ambjørn, B. Durhuus, J. Frohlich and P. Orland, Nucl. Phys. B270 (1986) 457; A. Billoire and F. David, Nucl. Phys. B275 (1986) 617; D. V. Boulatov, V. A. Kazakov, I. K. Kostov and A. A. Migdal, Nucl. Phys. B275 (1986) 641.ADSCrossRefGoogle Scholar
  11. [11]
    J. Ambjørn, private communication; B. Brügmann, Phys. Rev. D47 (1993) 3330 [cf. Fig. 1].Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • I. Antoniadis
    • 1
  1. 1.Centre de Physique ThéoriqueEcole PolytechniquePalaiseauFrance

Personalised recommendations