A Numerical Study of DMS-Oxidation in the Marine Boundary Layer

  • Karsten Suhre
  • Robert Rosset
Part of the NATO · Challenges of Modern Society book series (NATS, volume 18)


During the last decade, dimethyl sulfide (DMS) has been invoked as an important source of non-anthropogenic sulfur (Andreae et al., 1983; Nguyen at al., 1983). Produced by marine phytoplankton, DMS is transferred to the marine boundary layer (MBL) where it is oxidized to sulfur dioxide (SO 2),methanesulfonic acid (MSA) and to sulfuric acid (H 2 SO 4). The relationship between DMS emission, cloud condensation nuclei (CCN) and cloud albedo is a problem of climatic interest (Charlson et al., 1987) to be treated on the mesoscale due to the fact that the processes involved in DMS-oxidation in the MBL have timescales typically of the order of some hours or less.


Diurnal Cycle Boundary Layer Height Cloud Condensation Nucleus Marine Boundary Layer Cloud Albedo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andreae, M. O., Berresheim, H., Andreae, T. W., Kritz, M. A., Bates, T. S., and Merrill, J. T., 1988, Vertical distribution of dimethylsulfide, sulfur dioxide, aerosol ions, and radon over the northeast pacific ocean, J. Atmos. Chemistry, 6:149–173.CrossRefGoogle Scholar
  2. Andreae, M. O., Ferek, R. J., Bermond, F., Byrd, K. P., Engstrom, R. T., Hardin, S., Houmere, P. D., LeMarrec, F., Raemdonck, H., and Chatfield, R. B., 1985, Dimethyl sulfide in the marine atmosphere, J. Geophys. Res., 90:12891–12900.CrossRefGoogle Scholar
  3. Andreae, M. O. and Raemdoisck, H., 1983, Dimethyl sulfide in the surface ocean and the marine atmosphere, Science, 221:774–747.CrossRefGoogle Scholar
  4. Bechtold, P., Pinty, J. P., and Mascart, P., 1991, A numerical investigation of the influence of large scale winds on sea breeze an inland breeze type circulations, J. Appl. Meteor., 30:1268–1279.CrossRefGoogle Scholar
  5. Berresheim, H., Andreae, M. O., Ayers, G. P., Gillett, R. W., Merrill, J. T., Davis, V. J., and Chameides, W. L., 1990, Airborne measurements of dimethylsulfide, sulfur dioxide, and aerosol ions over the southern ocean south of australia, J. Atoros. Chemistry, 10:341–370.CrossRefGoogle Scholar
  6. Bougeault, P., and Lacarrère, P., 1989, Parameterization of orography-induced turbulence in a meso-beta model, Mon. Wee. Rev., 117:1872–1890.CrossRefGoogle Scholar
  7. Charlson, R. J., Lovelock, J. E., Andreae, M. O., and Warren, S. G., 1987, Oceanic phyto-plankton, atmospheric sulphur, cloud albedo and climate, Nature, 326:655–661.CrossRefGoogle Scholar
  8. Kreidenweis, S. M., Penner, J. E., Yin, F., and Seinfeld, J.H., 1991, The effects of dimethyl-sulfide upon marine aerosol concentrations, Atoros. Env., 25A:2501–2511.Google Scholar
  9. Nguyen, B. C., Bonsang, B., and Gaudry, A., 1983, The role of the ocean in the global atmospheric sulfur cycle, J. Geophys. Res., 88:10903–10914.CrossRefGoogle Scholar
  10. Warneck, P., 1988, “Chemistry of the Natural Atmosphere”, Academic Press, San Diego.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Karsten Suhre
    • 1
  • Robert Rosset
    • 1
  1. 1.Laboratoire d’Aérologie (UA CNRS 354)Université Paul SabatierToulouseFrance

Personalised recommendations