Analysis of Mid-Tropospheric Carbon Monoxide Data Using a Three-Dimensional Global Atmospheric Chemistry Numerical Model

  • Richard C. Easter
  • Rick D. Saylor
  • Elaine G. Chapman
Part of the NATO · Challenges of Modern Society book series (NATS, volume 18)


Carbon monoxide is an important atmospheric trace species. It has long been recognized as a major contributor to urban air quality and in high concentrations is known to adversely affect health (Seinfeld, 1986). CO is the third most abundant carbon-containing species in the atmosphere and its reaction with hydroxyl radical (OH) represents a 2000–3000 Tg/yr (1 Tg = 1012 g) source of carbon dioxide. On a global basis, through its reaction with OH, CO plays a significant role in the troposphere’s overall oxidative capacity (Crutzen and Zimmerman, 1991). Furthermore, depending on the local abundance of nitrogen oxides, CO can participate in reactions that either increase or decrease the formation of tropospheric ozone (Logan et al., 1981).


Biomass Burning Mixed Layer Depth Convective Cloud Cloud Base Southern Indian Ocean 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Carmichael, G. R.,1979, Development of a regional transport/transformation/removal model for SO2 and sulfate in the eastern United States, Ph.D. dissertation, University of Kentucky, Lexington, Kentucky.Google Scholar
  2. Chang, J. S., R. A. Brost, I. S. A. Isaksen, S. Madronich, P. Middleton, W. R. Stockwell, and C. J. Walcek, 1987, A three-dimensional Eulerian acid deposition model: Physical concepts and formulation, J. Geophys. Res., 92:14681–14700.CrossRefGoogle Scholar
  3. Connors, V. S., Cahoon, D. R., Reichle, H. G., Brunke, E.-G., Garstang, M., Seiler, W., and Scheel, H. E., 1991, Savanna burning and convective mixing in southern Africa: Implications for CO emissions and transport, in “Global Biomass Burning: Atmospheric, Climatic, and Biospheric Implications”, J. S. Levine, ed., MIT Press, Cambridge, Massachusetts, 147–159.Google Scholar
  4. Connors, V. S., Miles, T., and Reichle, H. G., 1989, Large-scale transport of a CO-enhanced air mass from Europe to the Middle East, J. Atmos. Chem., 9:479–496.CrossRefGoogle Scholar
  5. Crutzen, P. and Zimmerman, P.,1991, The changing chemistry of the troposphere, Tellus, 43AB:136–151.Google Scholar
  6. DeHaven, D. A., 1980, CO and CH4 sources and their effects on the CO-CH4 budgets, M.S. Thesis, University of Kentucky, Lexington, Kentucky.Google Scholar
  7. Easter, R. C., 1993, Two modified versions of Bott’s positive-definite numerical advection scheme, Mon. Wea. Rev., 121:297–304.CrossRefGoogle Scholar
  8. Fishman, J., and Crutzen, P. J., 1978, The origin of ozone in the troposphere, Nature, 274:855–858.CrossRefGoogle Scholar
  9. Fung, I., John, J., Lerner, J., Matthews, E., Prather, M., Steele, L., and Fraser, P., 1991, Three-dimensional model synthesis of the global methane cycle, J. Geophys. Res., 96:13033–13065.CrossRefGoogle Scholar
  10. Kitada, T. and Peters, L. K., 1982, A three-dimensional transport-chemistry analysis of CO and CH4 in the troposphere, in “AMS Second Symposium on the Composition of the Nonurban Troposphere”, Williamsburg, Virginia, 96–101.Google Scholar
  11. Kwok, H. C. W., Langlois, W. E., and Ellefsen, R. A., 1971, Digital simulation of the global transport of carbon monoxide, IBM J. Res. Develop., 15:3–9.CrossRefGoogle Scholar
  12. Lelieveld, J., and Crutzen, P.J., 1990, Influence of cloud photochemical processes on tropospheric ozone, Nature, 343:227–233.CrossRefGoogle Scholar
  13. Logan, J. A., Prather, M. J., Wofsy, S. C., McElroy, M. B., 1981, Tropospheric chemistry: A global perspective, J. Geophys. Res., 86:7210–7254.CrossRefGoogle Scholar
  14. Luecken, D. J., Berkowitz, C. M., Bader, D. C., Vukovich, F. M., and Glatzmeir, G. C., 1989, The role of fair weather cumulus clouds in the long range transport of carbon monoxide and methane, American Geophysical Union Spring Meeting, Baltimore, Maryland.Google Scholar
  15. Luecken, D. J., Berkowitz, C. M., and Easter, R. C., 1991, Use of a three-dimensional cloud-chemistry model to study the transatlantic transport of soluble sulfur species, J. Geophys. Res., 96:22477–22490.CrossRefGoogle Scholar
  16. Newell, R. S., Connors, V. S., Reichle, H. G., 1988, Regional studies of potential CO sources based on space shuttle and aircraft measurements, J. Atmos. Chem., 6:61–81.CrossRefGoogle Scholar
  17. Peters, L. K., and Jouvanis, A. A., 1979, Numerical simulation of the transport and chemistry of CH4 and CO in the troposphere, Atmos. Environ., 13:1443–1462.CrossRefGoogle Scholar
  18. Pinto, J. P., Yung, Y. L., Rind, D., Russell, G. L., Lerner, J. A., Hansen, J. E., and Hameed, S., 1983, A general circulation model study of atmospheric carbon monoxide, J. Geophys. Res., 88:3691–3702.CrossRefGoogle Scholar
  19. Reichle, H. G., Connors, V. S., Holland, J. A., Hypes, W. D., Wallio, H. A., Casas, J. C., Gormsen, B.B., Saylor, M. S., and Hesketh, W. D., 1986, Middle and upper tropospheric carbon monoxide mixing ratios as measured by a satellite-borne remote sensor during November 1981, J. Geophys. Res., 91:10865–10887.CrossRefGoogle Scholar
  20. Reichle, H. G., Connors, V. S., Holland, J. A., Sherrill, R. T., Wallio, H. A., Casas, J. C., Condon, E.P., Gormsen, B. B., and Seiler, W., 1990, The distribution of middle tropospheric carbon monoxide during early October 1984, J. Geophys. Res., 95:9845–9856.CrossRefGoogle Scholar
  21. Saylor, R. D., and Peters, L. K., 1990, The contribution of anthropogenic emissions to the global distribution of CO in the troposphere, Symposium on the Chemistry of the Global Atmosphere, Commission on Atmospheric Chemistry and Global Pollution, Chamrousse, France.Google Scholar
  22. Saylor, R. D., and Peters, L. K., 1991, The global numerical simulation of the distribution of CO in the troposphere, “Air Pollution Modeling and Its Application VIII”, H. van Dop and D. G. Steyneds., Plenum Press, New York, 485–496.Google Scholar
  23. Seiler, W., and Conrad, R., 1987, Contribution of tropical ecosystems to the global budget of trace gases, especially CH4, H2, CO and N2O, in “The Geophysiology of Amazonia”, R.E. Dickinson, ed., John Wiley & Sons, New York.Google Scholar
  24. Seinfeld, J., 1986, “Atmospheric Chemistry and Physics of Air Pollution”, John Wiley & Sons, New York.Google Scholar
  25. Walcek, C. J., and G. R. Taylor, 1986, A theoretical method for computing vertical distributions of acidity and sulfate production within cumulus clouds, J. Atmos. Sci.,43:339–355.CrossRefGoogle Scholar
  26. Warneck, P., 1988, “Chemistry of the Natural Atmosphere”, Academic Press, New York.Google Scholar
  27. Watson, C. E., Fishman, J., and Reichle, H. G., 1990, The significance of biomass burning as a source of carbon monoxide and ozone in the southern hemisphere tropics: A satellite analysis, J. Geophys. Res., 95:16443–16450.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Richard C. Easter
    • 1
  • Rick D. Saylor
    • 1
  • Elaine G. Chapman
    • 1
  1. 1.Pacific Northwest LaboratoryEarth and Environmental Sciences CenterRichlandUSA

Personalised recommendations