Skip to main content

Diffusion-limited Aggregation in the Earth Sciences

  • Chapter
Fractals in Petroleum Geology and Earth Processes
  • 268 Accesses

Abstract

The earth sciences are concerned with extremely diverse sets of strongly interacting phenomena. Very often the development of a better understanding of these phenomena requires an accurate description of complex structures and the way in which they evolve under conditions that may be far from equilibrium. The recent development of fractal geometry (Mandelbrot, 1975, Mandelbrot, 1977, Mandelbrot, 1982) has provided a valuable new approach towards a quantitative description of the statistical properties of a wide variety of structures ranging in size from large molecules to the coastlines of continents. In recent years many simple non-equilibrium growth models have been developed, which very often lead to the formation of complex structures that closely resemble structures formed by natural processes and that can also be described quite well in terms of fractal geometry (Family and Landau, 1984; Stanley and Ostrowsky, 1986; Feder, 1988; Avnir, 1989; Vicsek, 1989; and Pietronero, 1989, for example). In most cases these models are too simple to provide accurate, detailed descriptions of natural phenomena. However, they often seem to capture the most essential features and provide a basis for the development of more complete models that can be used to study specific processes and systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Avnir, D., ed., The Fractal Approach to Heterogeneous Chemistry: Surface Colloids. Polymers: Surfaces. Colloids, Polymers, Wiley, Chichester (1989).

    Google Scholar 

  • Ball, R. C., DLA in the real world, in: Stanley and Ostrowsky, pp. 69–78 (1986).

    Google Scholar 

  • Ball, R. C., and Brady, R. M., Large scale lattice effects in diffusion-limited aggregation, J. Phys. A18, L809–L813 (1985).

    ADS  Google Scholar 

  • Batty, M., Longley, P., and Fotheringham, S., Urban growth and form: scaling, fractal geometry and diffusion-limited aggregation, Environment and Planning A21, 1447–1472 (1990).

    Google Scholar 

  • Bedinger, M. S., Electric-analog study of cave formation, Nat. Speleol. Soc. Am. Bull. 28, 127 (1966).

    Google Scholar 

  • Benzi, R., Paladin, G., Parisi, G., and Vulpiani, A., On the multifractal nature of fully developed turbulence and chaotic systems, J. Phys. A17, 3521–3532 (1984).

    MathSciNet  ADS  Google Scholar 

  • Burrough, R A., Fractals and Geochemistry, in: Avnir, pp. 383–406 (1989).

    Google Scholar 

  • Chopard, B., Herrmann, H. J., and Vicsek, T., Structure and growth mechanisms of mineral dendrites, Nature 353, 409–412 (1991).

    Article  ADS  Google Scholar 

  • Crowe, C. W., Principles of acid fracturing in reservoir simulation, M. J. Economides and K. G. Nolte, eds., Schlumberger Educational Services, Houston, pp. 17-1–17-12 (1987).

    Google Scholar 

  • Cullen, J. J., IV, and La Fleur, R. G., Theoretical considerations on simulations of karstic aquifers, in: La Fleur, pp. 249–280 (1984).

    Google Scholar 

  • Daccord, G., Chemical dissolution of a porous medium by a reactive fluid, Phys. Rev. Lett. 58, 479–482 (1987).

    Article  ADS  Google Scholar 

  • Daccord, G., Dissolutions, evaporation, etchings, in: Avnir, pp. 183–197 (1989).

    Google Scholar 

  • Daccord, G., and Lenormand, R., Fractal patterns from chemical dissolution, Nature 325, 41–43 (1987).

    Article  ADS  Google Scholar 

  • Daccord, G., Nittmann, J., and Stanley, H. E., Radical viscous fingers and diffusion limited aggregation: fractal dimension and growth sites, Phys. Rev. Lett. 56, 336–339 (1986).

    Article  ADS  Google Scholar 

  • Daccord, G., Touboul, E., and Lenormand, R., Carbonate acidizing: a quantitative study of the wormholing phenomenon, Society of Petroleum Engineers, Paper No. 16887, 62nd Annual Technical Conference and Exhibition of SPE, Dallas, Texas (1987).

    Google Scholar 

  • Dunne, T., Formation and controls of channel networks, Prog. Phys. Geog. 4, 211–239 (1980).

    Article  Google Scholar 

  • England, A. H., Complex Variable Method in Elasticity, William Clowes & Sons, London (1971).

    Google Scholar 

  • Ernst, R. E., Magma flow directions in two mafic proterozoic dyke swarms as estimated using anisotropy of magnetic susceptibility data, in: Mafic Dykes and Emplacement Mechanisms. Proceedings of the Second International Dyke Conference Adelaide, S. Australia. (A. J. Parker, P. C. Rickwood, and D. H. Tucker, eds.), Balkema Publishers, Rotterdam, (1990) pp. 231–235.

    Google Scholar 

  • Ewers, R. O., A model for the development of broad scale networks of groundwater flow in steeply dipping carbonate aquifers, Brit. Cave Res. Assoc. Trans. 5, 121 (1982).

    ADS  Google Scholar 

  • Fahrig, W. F., and West, T. D, Diabase Dyke Swarms of the Canadian Shield, Geological Survey of Canada, Map 1627A (1986).

    Book  Google Scholar 

  • Family, F., and Landau, D. P., Kinetics of Aggravation and Gelation, North-Holland, Amsterdam (1984).

    Google Scholar 

  • Feder, J., Fractals, Plenum Press, New York (1988).

    MATH  Google Scholar 

  • Ford, D.C., Geologic structure and a new explanation of limestone cavern genesis, Trans, of the Cave Res. Group of Great Britain 13, 81 (1971).

    Google Scholar 

  • Ford, D. C., and Williams, P. W., Karst Geomorphology and Hydrology, Unwin Hyman, London (1989).

    Book  Google Scholar 

  • Fotheringham, A. S., Batty, M., and Longley, P. A., Diffusion-limited aggregation and the fractal nature of urban growth, Papers of the Regional Science Association 67, 55–69 (1989).

    Article  Google Scholar 

  • Fowler, D. A., Self-organised mineral textures of igneous rocks: The fractal approach, Earth Sci. Rev. 29, 47–55 (1990).

    ADS  Google Scholar 

  • Fowler, D. A., Stanley, H. E., and Daccord, G., Disequilibrium silicate mineral textures: fractal and non-fractal features, Nature 341, 134–138 (1989).

    Article  ADS  Google Scholar 

  • Frish, U., Sulem, P. L., and Nelkin, M., A simple dynamical model of intermittent fully developed turbulence, J. Fluid Mech. 87, 719–736 (1978).

    Article  ADS  Google Scholar 

  • Giavanoli, R., Natural and Synthetic Manganese Nodules in Geology and Geochemistry of Manganese, Vol. 1, General Problems, Minerology, Geochemistry Methods (I. M. Varentsov and Grasselly, eds.), E. Schweizbartsche, Verlagsbuck-handlung, Stuttgart, pp. 195–196 (1980).

    Google Scholar 

  • Gibbs, H. W., Tunnel-gulley erosion on the Wither Hills, Marlborough, New Zealand, J. Sci. Tech. 27, 135–146 (1945).

    Google Scholar 

  • Gilman, K., and Newson, M. D., Soil Pipes and Pipe Flow: A Hydrological Study in Upland Wales, British Geomorphological Research Group, Research Monograph Series 1, Geo Abstracts, Norwich (1980).

    Google Scholar 

  • Halsey, T. C., Jensen, M. H., Kadanoff, L. P., Procaccia, I., and Shraiman, B. I., Fractal measures and their singularities: The characterization of strange sets, Phys. Rev. A33, 1141–1151 (1986).

    MathSciNet  ADS  Google Scholar 

  • Higgins, C. G., Drainage systems developed by sapping on Earth and Mars, Geol. 10, 147–152 (1982).

    Article  ADS  Google Scholar 

  • Higgins, C. G., Piping and sapping: Development of land forms by groundwater outflow in La Fleur, pp. 18–58 (1984).

    Google Scholar 

  • Jones, J. A. A., Soil piping and stream channel initiation, Water Resources Res. 7, 602–610 (1971).

    Article  ADS  Google Scholar 

  • Jones, J. A. A., Soil Piping and the Subsurface Initiation of Stream Channel Networks. Ph.D. thesis, Cambridge University, U. K. (1975).

    Google Scholar 

  • Jones, J. A. A., The Nature of Soil Piping: A Review of Research, Br. Geomorphol. Res. Grp. Res. Mon. 3 (1981).

    Google Scholar 

  • La Fleur, R. C., ed., Groundwater as a Geomorphic Agent, Allen and Unwin, Boston (1984).

    Google Scholar 

  • Landau, L. D., and Lifshitz, E. M., Theory of Elasticity, 3rd English Ed., Pergamon, Oxford (1986).

    Google Scholar 

  • Lauritzen, S. E., Odling, N., and Petersen, J., Modelling the Evolution of Channel Networks in Carbonate Rocks, pp. 57–62, Eurock ′92, Thomas Telford, London (1992).

    Google Scholar 

  • Louis, E., and Guinea, F., The fractal nature of fracture, Europhys. Lett. 3, 871–877 (1987).

    Article  ADS  Google Scholar 

  • Louis, E., Guinea, F., and Flores, F., The Fractal Nature of Fracture, in: Fractals in Physics (L. Pietronero and E. Tosatti, eds.), North-Holland, Amsterdam, pp. 177–180 (1985).

    Google Scholar 

  • Lovejoy, S., and Schertzer, D., Scale invariance, symmetries, fractals and stochastic simulations of atmospheric phenomena, Bull. Am. Meterol. Soc. 67, 21–32 (1986).

    Article  Google Scholar 

  • MÃ¥løy, K.J., Feder, J., and Jøssang, T., Viscous fingering fractals in porous media, Phys. Rev. Lett. 55, 2688–2691 (1985).

    Article  ADS  Google Scholar 

  • Mandelbrot, B. B., Les Objects Fractales: Forme hazard et dimension, Flammarion, Paris (1975).

    Google Scholar 

  • Mandelbrot, B. B., Fractals: Form, Chance and Dimension, W. H. Freeman and Company, San Francisco (1977).

    Google Scholar 

  • Mandelbrot, B. B., The Fractal Geometry of Nature, W.H. Freeman and Co., San Francisco (1982).

    MATH  Google Scholar 

  • Markert, J. C., and Al Shaieb, Z., Diagenesis and evolution of secondary porosity in upper Minnelusa Sandstones, Powder River Basin, Wyoming, in: Clastic diageneses (D. A. McDonald and R. C. Surdham, eds.), Amer. Assoc. Petrol. Geol. Memoir 37, 367–390 (1984).

    Google Scholar 

  • Matsushita, M., Experimental observations of aggregation, in: Avnir, 1988, pp. 1-61–1-79,

    Google Scholar 

  • Meakin, P., Phys. Rev. B30, 4207 (1984).

    ADS  Google Scholar 

  • Meakin, P., The structure of two-dimensional Witten-Sander aggregates, J. Phys. A18, L661–L666 (1985).

    ADS  Google Scholar 

  • Meakin, P., Diffusion-limited aggregation on multifractal lattices: A model for fluid-fluid displacement in porous media, Phys. Rev. A36, 2833–2837 (1987b).

    ADS  Google Scholar 

  • Meakin, P., The growth of fractal aggregates and their fractal measures, in: Phase Transitions and Critical Phenomena, Vol. 12 (C. Domb and J. L. Lebowitz, eds.), pp. 336–489 (1988a).

    Google Scholar 

  • Meakin, P., Invasion percolation and Eden growth on multifractal lattices, J. Phys. A21, 3501–3522 (1988b).

    ADS  Google Scholar 

  • Meakin, P., Fractal aggregates in geophysics, Rev. Geophys. 29, 317 (1991).

    Article  ADS  Google Scholar 

  • Meakin, P., Models for material failure and deformation, Science 252, 226–234 (1991).

    Article  ADS  Google Scholar 

  • Meakin, P., An Eden model for randomly branched structures, Phys. Scripta 45, 69 (1992).

    Article  ADS  Google Scholar 

  • Meakin, P., Ball, R. C., Ramanlal, P., and Sander, L. M., Structure of large two-dimensional square-lattice diffusion-limited aggregates: Approach to asymptotic behavior, Phys. Rev. A35, 5233–5239 (1987).

    ADS  Google Scholar 

  • Meakin, P., Leyvraz, F., and Stanley, H. E., New class of screened growth aggregates with a continuously tunable fractal dimension, Phys. Rev. A31, 1195–1198 (1985).

    ADS  Google Scholar 

  • Milton, D. J., Water and processes of degradation in the Martian landscape, J. Geophys. Res. 78, 4037–4047 (1973).

    Article  ADS  Google Scholar 

  • Moussavi-Harami, R., and Brenner, R. L., Geohistory analysis and petroleum reservoir characteristics of lower Cretaceous (Neocomian) sandstones, Eastern Kopet-Dagh Basin, Northeastern Iran, Amer. Assoc. Petrol. Geol. Bull. 76, 1200–1208 (1992).

    Google Scholar 

  • Niemeyer, L., Peitronero, L., and Wiesmann, H. J., Fractal dimension of dielectric breakdown, Phys. Rev. Lett. 52, 1033–1036 (1983).

    Article  ADS  Google Scholar 

  • Nittmann, J., Daccord, G., and Stanley, H. E., Fractal growth of viscous fingers: Quantitative characterization of a fluid instability phenomenon, Nature 314, 141–144 (1985).

    Article  ADS  Google Scholar 

  • Palmer, A. N., Geomorphic interpretation of Karst features, in: R. G. La Fleur, pp. 173–209 (1984).

    Google Scholar 

  • Pietronero, L., ed., Fractals Physical Origin and Properties, Plenum, New York (1989).

    Google Scholar 

  • Potter, R. M., The tetravalent manganese oxides: Clarification of their structural variations and relationships and characterization of their occurrence in the terrestrial weathering environment as desert varnish and other manganese oxide concentrations, unpublished Ph.D. thesis, California Institute of Technology (1979).

    Google Scholar 

  • Racz, Z., and Vicsek, T., Phys. Rev. Lett. 51, 2382 (1983).

    Article  ADS  Google Scholar 

  • Roach, D., Fractal analyses and geometrical models of fracture surfaces in rock, unpublished Ph.D. thesis, Univ. of Ottawa, Ottawa, Canada (1992).

    Google Scholar 

  • Roach, D., and Fowler, A. D., Dimensionality analysis of patterns: fractal measurement algorithms, Computers and Geosciences 19 (1993) (to be published).

    Google Scholar 

  • Roach, D., Fowler, A. D., and Fyson, W. K., Fractal fingerprinting of joint and shatter cone surfaces, Geology (1993) (to be published).

    Google Scholar 

  • Sander, L. M., Theory of fractal growth processes, in: Family and Landau, pp. 13–17 (1984).

    Google Scholar 

  • Smirnov, B. M., Fractal clusters, Sov. Phys. Usp. 29, 481–505 (1986).

    Article  ADS  Google Scholar 

  • Stanley, H. E., and Ostrowsky, N., eds., On Growth and Form: Fractal and Non-Fractal Patterns in Physics, NATO ASI series E100, Martinus Nijhoff, Dordrecht (1986).

    MATH  Google Scholar 

  • Stonecipher, S. A., Winn, R. D., Jr., and Bishop, M. G., Diagenesis of the frontier formation, Moxa Arch: A function of sandstone geometry, texture and composition and fluid flux, in: Clastic Diagenesis (D. A. McDonald and R. C. Surdham, eds.), Amer. Assoc. Petrol Geol. Memoir 37, 289–317 (1984).

    Google Scholar 

  • Tarboton, D. G., Bras, R. L., and Rodriquez-Iturbe, I., Water Resources Res. 24, 1317 (1988).

    Article  ADS  Google Scholar 

  • Tolman, S., and Meakin, P., Off-lattice and hypercubic lattice models for diffusion-limited aggregation in dimensionalities 2–8, Phys. Rev. A40, 428–437 (1989).

    ADS  Google Scholar 

  • Van Damme, H., Flow and interfacial instabilities in Newtonian and Colloidal fluids, in: The Fractal Approach to Heterogeneous Chemistry: Surface Colloids, Polymers (D. Avnir, ed.), Wiley, Chichester, 441 pp. (1989a).

    Google Scholar 

  • Van Damme, H., Flow and interfacial instabilities in Newtonian and Colloidal fluids (or The birth, life and death of a fractal) in: Avnir, pp. 199–226 (1989b).

    Google Scholar 

  • Van Damme, H., Laroche, C., Gatineau, P., and Levitz, P., Viscoelastic effects in fingering between miscible fluids, J. Phys. (Paris) 48, 1121–1133 (1987).

    Article  Google Scholar 

  • Van Damme, H., and Lemaire, E., Viscous fingering and viscoelastic fracture in clays, in: Statistical Models for the Fracture of Random Media (H. J. Hermann and S. Roux, eds.), North-Holland, Amsterdam, pp. 77–85 (1990).

    Google Scholar 

  • Van Damme, H., Obrecht, F., Levitz, P., Gatineau, L., and Laroche, C., Fractal viscous fingering in clay slurries, Nature 320, 731–733 (1986).

    Article  ADS  Google Scholar 

  • Vicsek, T., Fractal Growth Phenomena, World Scientific, Singapore (1989).

    MATH  Google Scholar 

  • Wiesmann, H. J., Realistic models for dielectric breakdown, in: Fractals Physical Origin and Properties (L. Pietronero, ed), Plenum, New York, pp. 243–257 (1989).

    Google Scholar 

  • Witten, T. A., and Meakin, P., Diffusion-limited aggregation of multiple growth sites, Phys. Rev. B28, 5632 (1983).

    ADS  Google Scholar 

  • Witten, T. A., and Sander, L. M., Diffusion-limited aggregation, a kinetic critical phenomenon, Phys. Rev. Lett. 47, 1400–1403 (1981).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Meakin, P., Fowler, A.D. (1995). Diffusion-limited Aggregation in the Earth Sciences. In: Barton, C.C., La Pointe, P.R. (eds) Fractals in Petroleum Geology and Earth Processes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1815-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1815-0_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5733-9

  • Online ISBN: 978-1-4615-1815-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics